K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2019

Với m nguyên dương ta có: 

\(\frac{m+0,5}{2.3^{m-1}}-\frac{m+1,5}{2.3^m}=\frac{m}{3^m}\)

Thay m lần lượt bởi 1;2;....;m ta có:

\(\frac{1}{3}=\frac{1,5}{2}=\frac{2,5}{2.3}\)

\(\frac{2}{3^2}=\frac{2,5}{2.3}-\frac{3,5}{2.3^2}\)

......................................

\(\frac{n}{3^n}=\frac{n+0,5}{2.3^{n-1}}-\frac{n+1,5}{2.3^n}\)

Do đó: \(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^2}+...+\frac{n}{3^n}=\frac{1,5}{2}-\frac{n+1,5}{2.3^n}< \frac{1,5}{2}=\frac{3}{4}\)

6 tháng 9 2018

em học lớp 7 nên không biết anh cho em đúng đi rồi em nhờ anh em lớp 12 giải cho

AH
Akai Haruma
Giáo viên
11 tháng 9 2018

Bài 1:

Chiều thuận:\(x^2+y^2\vdots 3\Rightarrow x\vdots 3; y\vdots 3\)

Giả sử cả \(x\not\vdots 3, y\not\vdots 3\). Ta biết rằng một số chính phương khi chia 3 thì dư $0$ hoặc $1$.

Do đó nếu \(x\not\vdots 3, y\not\vdots 3\Rightarrow x^2\equiv 1\pmod 3; y^2\equiv 1\pmod 3\)

\(\Rightarrow x^2+y^2\equiv 2\pmod 3\) (trái với giả thiết )

Suy ra ít nhất một trong 2 số $x,y$ chia hết cho $3$

Giả sử $x\vdots 3$ \(\Rightarrow x^2\vdots 3\). Mà \(x^2+y^2\vdots 3\Rightarrow y^2\vdots 3\Rightarrow y\vdots 3\)

Vậy \(x^2+y^2\vdots 3\Rightarrow x,y\vdots 3\)

Chiều đảo:

Ta thấy với \(x\vdots 3, y\vdots 3\Rightarrow x^2\vdots 3; y^2\vdots 3\Rightarrow x^2+y^2\vdots 3\) (đpcm)

Vậy ta có đpcm.

AH
Akai Haruma
Giáo viên
11 tháng 9 2018

Bài 2: > chứ không \(\geq \) nhé, vì khi \(a=b=c=\frac{1}{2}\) thì cả 3 BĐT đều đúng.

Phản chứng, giả sử cả 3 BĐT đều đúng

\(\Rightarrow \left\{\begin{matrix} a(1-b)> \frac{1}{4}\\ b(1-c)> \frac{1}{4}\\ c(1-a)>\frac{1}{4}\end{matrix}\right.\)

\(\Rightarrow a(1-a)b(1-b)c(1-c)> \frac{1}{4^3}(*)\)

Theo BĐT AM-GM thì:

\(a(1-a)\leq \left(\frac{a+1-a}{2}\right)^2=\frac{1}{4}\)

\(b(1-b)\leq \left(\frac{b+1-b}{2}\right)^2=\frac{1}{4}\)

\(c(1-c)\leq \left(\frac{c+1-c}{2}\right)^2=\frac{1}{4}\)

\(\Rightarrow abc(1-a)(1-b)(1-c)\leq \frac{1}{4^3}\) (mâu thuẫn với $(*)$)

Do đó điều giả sử là sai, tức là trong 3 BĐT trên có ít nhất một BĐT đúng.

26 tháng 9 2015

Ta có :

\(\frac{1}{2^3}+\frac{1}{3^3}+\frac{1}{4^3}+...+\frac{1}{n^3}<\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{4.5.6}+...+\frac{1}{\left(n-1\right)n\left(n+1\right)}\)

\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\)

\(=\frac{1}{1.2}-\frac{1}{n\left(n+1\right)}=\frac{1}{2}-\frac{1}{n\left(n+1\right)}\)

Vì n > 2 nên \(\frac{1}{n\left(n+1\right)}\le\frac{1}{6}\)

Do đó \(\frac{1}{2}-\frac{1}{n\left(n+1\right)}<\frac{1}{4}\)

=> ĐPCM

21 tháng 5 2018

Ta chứng minh \(2^2+4^2+...+\left(2n\right)^2=\frac{2n\left(n+1\right)\left(2n+1\right)}{3}\)  (1)  

với mọi n \(\in\)N* , bằng phương pháp quy nạp 

Với n = 1, ta có \(2^2=4=\frac{2.1\left(1+1\right)\left(2.1+1\right)}{3}\)

=> (1) đúng khi n = 1 

Giả sử đã có (1) đúng khi n = k , k\(\in\)N* , tức là giả sử đã có : 

\(2^2+4^2+...+\left(2k\right)^2=\frac{2k\left(k+1\right)\left(2k+1\right)}{3}\)

Ta chứng minh (1) đúng khi n = k + 1 , tức là ta sẽ chứng minh 

\(2^2+4^2+...+\left(2k\right)^2+\left(2k+2\right)^2=\frac{2k\left(k+1\right)\left(k+2\right)\left(2k+3\right)}{3}\)

=> Từ giả thiết quy nạp ta có : 

\(2^2+4^2+...+\left(2k\right)^2+\left(2k+2\right)^2=\frac{2k\left(k+1\right)\left(2k+1\right)}{3}+\left(2k+2\right)^2\)

                                                                    \(=\frac{2\left(k+1\right)\left(2k^2+k+6k+6\right)}{3}\)

                                                                    \(=\frac{2\left(k+1\right)\left[2k\left(k+2\right)+3\left(k+2\right)\right]}{3}\)

                                                                    \(=\frac{2\left(k+1\right)\left(k+2\right)\left(2k+3\right)}{3}\)

Từ các chứng minh trên , suy ra (1) đúng với mọi n \(\in\)N*                                             

21 tháng 5 2018

ai quan tam lam chi

20 tháng 6 2018

\(\frac{\Rightarrow\left(m+n\right)\left(m^2+n^2\right)}{4}< =\frac{m^3+n^3}{2}\Rightarrow2\left(m+n\right)\left(m^2+n^2\right)< =4\left(m^3+n^3\right)\)

\(\Rightarrow2\left(m^3+n^3+m^2n+mn^2\right)< =4\left(m^3+n^3\right)\Rightarrow2\left(m^3+n^3\right)+2\left(m^2n+mn^2\right)< =\)

\(2\left(m^3+n^3\right)+2\left(m^3+n^3\right)\Rightarrow2\left(m^2n+mn^2\right)< =2\left(m^3+n^3\right)\)

\(\Rightarrow2\left(m^2n+mn^2\right)-2\left(m^3+n^3\right)=2\left(m^2n+mn^2-m^3-n^3\right)< =0\)

\(\Rightarrow2\left(\left(m^2n-m^3\right)+\left(mn^2-n^3\right)\right)=2\left(m^2\left(n-m\right)+n^2\left(m-n\right)\right)\)

\(=2\left(m^2\left(n-m\right)-n^2\left(n-m\right)\right)=2\left(m^2-n^2\right)\left(n-m\right)=2\left(m+n\right)\left(m-n\right)\left(n-m\right)\)

\(=-2\left(m+n\right)\left(m-n\right)\left(m-n\right)=-2\left(m+n\right)\left(m-n\right)^2< =0\)

vì \(-2< 0;m+n>0;\left(m-n\right)^2>=0\Rightarrow-2\left(m+n\right)\left(m-n\right)< =0\)luôn đúng

\(\Rightarrow\frac{m+n}{2}\cdot\frac{m^2+n^2}{2}< =\frac{m^3+n^3}{2}\)luôn đúng (đpcm)

dấu = xảy ra khi m=n

2 tháng 11 2019

Đặt \(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{n}{3^n}\)

\(\Rightarrow3A=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{n}{3^{n-1}}\)

\(\Rightarrow3A-A=\left(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{n}{3^{n-1}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{n}{3^n}\right)\)

\(\Rightarrow2A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{n-1}}-\frac{n}{3^n}\)

Đặt \(S=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{n-1}}\)

\(\Rightarrow3S=3+1+\frac{1}{3}+...+\frac{1}{3^{n-2}}\)

\(\Rightarrow3S-S=\left(3+1+...+\frac{1}{3^{n-2}}\right)-\left(1+\frac{1}{3}+...+\frac{1}{3^{n-1}}\right)\)

\(\Rightarrow2S=3-\frac{1}{3^{n-1}}< 3\)

\(\Rightarrow2S< 3\)

\(\Rightarrow S< \frac{3}{2}\)

\(\Rightarrow2A< \frac{3}{2}\)

\(\Rightarrow A< \frac{3}{4}\left(đpcm\right)\)

3 tháng 11 2019

Thanks bn :))