Tính
1/2+1/3+1/4+1/6+1/10+1/15+...+1/36+1/45
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
1: =15+37+52-37-17=52-2=50
2: =38-42+14-25+27+15=62-42+29=20+29=49
Bài 1: Bỏ ngoặc rồi tính
3) (21-32) - (-12+32)=21-32-(-12)-32=21-32+12-32=-31
4) (12+21) - (23-21+10)=12+21-23+21-10=21
5) (57-725) - (605-53)=57-725-605+53=-1220
6) (55+45+15) - (15-55+45)=55+45+15-15+55-45=55+55=110
Bài 2: Tính các tổng sau một cách hợp lí
1) (-37) + 14 + 26 + 37=(-37+37)+(14+26)=0+40=40
2) (-24) +6 + 10 + 24=(-24+24)+(6+10)=0+16=16
3) 15 + 23 + (-25) + (-23)=(15-25)+(23-23)=-10+0=-10
4) 60 + 33 + (-50) + (-33)=(60-50)+(33-33)=10+0=10
5) (-16) + (-209) + (-14) + 209=(-16-14)+(-209+209)=-30+0=-30
6) (-12) + (-13) + 36 + (-11)=(-11-12-13)+36=-36+36=0
\(\dfrac{1}{2}\) + \(\dfrac{1}{3}\) + \(\dfrac{1}{6}\) + \(\dfrac{1}{10}\) + \(\dfrac{1}{15}\) + ... + \(\dfrac{1}{36}\) + \(\dfrac{1}{45}\)
= \(\dfrac{2}{4}\) + \(\dfrac{2}{6}\) + \(\dfrac{2}{12}\) + \(\dfrac{2}{20}\) + \(\dfrac{2}{30}\) + ... + \(\dfrac{2}{72}\) + \(\dfrac{2}{90}\)
= \(\dfrac{2}{2.2}\) + \(\dfrac{2}{2.3}\) + \(\dfrac{2}{3.4}\) + \(\dfrac{2}{4.5}\) + \(\dfrac{2}{5.6}\) + ... + \(\dfrac{2}{8.9}\) + \(\dfrac{2}{9.10}\)
= 2 (\(\dfrac{1}{2.2}\) + \(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\) + \(\dfrac{1}{5.6}\) + ... + \(\dfrac{1}{8.9}\) + \(\dfrac{1}{9.10}\))
= 2 (\(\dfrac{1}{2}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + ... + \(\dfrac{1}{8}\) - \(\dfrac{1}{9}\) + \(\dfrac{1}{9}\) - \(\dfrac{1}{10}\)) = 2 (\(\dfrac{1}{2}\) - \(\dfrac{1}{10}\)) = 2 . \(\dfrac{2}{5}\) = \(\dfrac{4}{5}\)Lời giải:
$\frac{A}{2}=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}$
$=\frac{2-1}{1\times 2}+\frac{3-2}{2\times 3}+\frac{4-3}{3\times 4}+\frac{5-4}{4\times 5}+\frac{6-5}{5\times 6}+\frac{7-6}{6\times 7}+\frac{9-8}{8\times 9}+\frac{10-9}{9\times 10}$
$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}$
$=1-\frac{1}{9}=\frac{8}{9}$
$\Rightarrow A=2\times \frac{8}{9}=\frac{16}{9}$
Coi \(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+\frac{1}{45}\)
\(\Rightarrow\frac{1}{2}A=\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+\frac{1}{45}\right).\frac{1}{2}\)
\(=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)
\(\Rightarrow A=\frac{2}{5}:\frac{1}{2}=\frac{4}{5}\)
bn ơi bài này ko có 1/4 đâu:
đặt A=\(\frac{1}{2}+\frac{1}{3}+\frac{1}{6}+...+\frac{1}{36}+\)\(\frac{1}{45}\)
\(\frac{1}{2}A\)=> \(\frac{1}{2}A\)= \(\frac{1}{4}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{72}+\frac{1}{90}\)
\(\frac{1}{2}A\)= \(\frac{1}{4}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{8\cdot9}+\frac{1}{9\cdot10}\)
\(\frac{1}{2}A\)= \(\frac{1}{4}\)+ \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{9}-\frac{1}{10}\)
\(\frac{1}{2}A\)= \(\frac{1}{4}+\frac{1}{2}-\frac{1}{10}=\frac{5}{20}+\frac{10}{20}-\frac{2}{20}=\frac{13}{20}\)
=> A = \(\frac{13}{20}:\frac{1}{2}=\frac{13}{10}\)
Chúc bn học tốt !
k cho mk