Ai đó giúp tớ câu này với
\(|1-x|+|2x-1|>5\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x\left(x-1\right)-\left(1-x\right)^2=0\)
\(\Leftrightarrow2x\left(x-1\right)-\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x-x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
Để giải phương trình này, chúng ta có thể bắt đầu bằng cách mở ngoặc và rút gọn các thành phần. Hãy làm theo các bước sau: 1. Mở ngoặc: 2x(x-1) - (1-x)^2 = 0 => 2x^2 - 2x - (1 - 2x + x^2) = 0 2. Rút gọn các thành phần: 2x^2 - 2x - 1 + 2x - x^2 = 0 => x^2 - 1 = 0 3. Đưa phương trình về dạng chuẩn: x^2 = 1 4. Giải phương trình: - Nếu x^2 = 1, thì x có thể là 1 hoặc -1. Vậy, phương trình có hai nghiệm là x = 1 và x = -1.
\(2x^2-10x+5=2x\left(x-5\right)+5⋮x-5\Rightarrow5⋮x-5\)
\(\Rightarrow x-5\inƯ\left(5\right)=\left\{-1;1;-5;5\right\}\Rightarrow x\in\left\{0;4;6;10\right\}\)
Đặt : \(t=2x+3\Rightarrow x=\frac{t-3}{2}\Rightarrow dt=2dx\Rightarrow dx=\frac{dt}{2}\)
Đỏi cận :
x | 0 1 |
t | 3 5 |
\(\int\limits^5_3\frac{\frac{t-3}{2}}{t^3}\frac{dt}{2}\)=\(\int_3^5\frac{t-3}{4t^3}dx\)=\(\frac{1}{4}\int\limits^5_3\left(\frac{t}{t^3}-\frac{3}{t^3}\right)dt\)=\(\frac{1}{4}\left(\frac{-1}{t}\right)\int\limits^5_3\)\(+\frac{3}{4}.\frac{1}{2t^2}\int\limits^5_3\) =\(\frac{-1}{20}+\frac{1}{12}+\frac{3}{200}-\frac{1}{24}=\frac{1}{150}\)
(x + x +.....+ x) +(1 + 2 +....+ 100)
100x + 5050=5750
100x=5750-5050=700
x=700:100=7
Vậy x = 7
(x+1)+(x+2)+(x+3)+.....+(x+100)=x+1+x+2+x+3+...+x+100=1+2+3+...100+100x=5050+100x=5750
100x=5750-5050=700
x=700/100=7
x=7
\(2x-3=\frac{x+1}{2}\)
\(\Rightarrow2\left(2x-3\right)=x+1\)
\(\Rightarrow4x-6=x+1\)
\(\Rightarrow3x=7\)
\(\Rightarrow x=\frac{7}{3}\)
\(2^3+\left(\dfrac{1}{5}\right)^4+5^4=8+\dfrac{1}{625}+625=\dfrac{5000+1+625^2}{625}=\dfrac{395626}{625}\)
\(Sửa:2^3+\left(\dfrac{1}{5}\right)^4\cdot5^4=8+\left(\dfrac{1}{5}\cdot5\right)^4=8+1=9\)
Câu 1:Ta có:
a) \(\left|x-3\right|=5\Leftrightarrow\left[{}\begin{matrix}x-3=5\\x-3=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)
b) \(\left|2x+3\right|=2.\left|4-x\right|\)
+)Xét \(\left\{{}\begin{matrix}2x+3\ge0\\4-x\ge0\end{matrix}\right.\) \(\Leftrightarrow\dfrac{-3}{2}\le x\le4\)
Khi đó \(2x+3=2\left(4-x\right)\Leftrightarrow2x+3=8-2x\Leftrightarrow4x=5\Leftrightarrow x=\dfrac{5}{4}\left(tm\right)\)
+) Xét \(\left\{{}\begin{matrix}2x+3\ge0\\4-x\le0\end{matrix}\right.\) \(\Leftrightarrow x\ge4\)
Khi đó: \(2x+3=2\left(x-4\right)=2x-8\Leftrightarrow0x=-11\left(vl\right)\)
+) Xét \(\left\{{}\begin{matrix}2x+3\le0\\4-x\ge0\end{matrix}\right.\) \(\Leftrightarrow x\le\dfrac{-3}{2}\)
Khi đó: \(-\left(2x+3\right)=2.\left(4-x\right)\Leftrightarrow-2x-3=8-2x\left(vl\right)\)
+)Xét \(\left\{{}\begin{matrix}2x+3\le0\\4-x\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{-3}{2}\\x\ge4\end{matrix}\right.\) \(\left(vl\right)\)
Vậy...
c) ĐKXĐ : \(3-x\ge0\Leftrightarrow x\le3\)
+)Xét \(x^{^2}-3x+1\ge0\)
\(\Leftrightarrow x^2-3x+1=3-x\Leftrightarrow x^2-2x-2=0\)
\(\Leftrightarrow x^2-2x+1=3\Leftrightarrow\left(x-1\right)^2=3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=\sqrt{3}\\x-1=-\sqrt{3}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1+\sqrt{3}\left(tm\right)\\x=1-\sqrt{3}\left(tm\right)\end{matrix}\right.\)
+)Xét \(x^{^2}-3x+1\le0\)
\(\Leftrightarrow-\left(x^2-3x+1\right)=3-x\)
\(\Leftrightarrow x^2-3x+1=x-3\Leftrightarrow x^2-4x+4=0\)
\(\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\left(tm\right)\)
Vậy...
Câu 2:
Ta có:
Phương trình \(\left(x+3\right)\left(x^2-2x+m-1\right)=0\) có một nghiệm là \(x=-3\)
\(\Rightarrow\)Phương trình \(\left(x+3\right)\left(x^2-2x+m-1\right)=0\) có ba nghiệm phân biệt khi và chỉ khi \(x^2-2x+m-1=0\) có 2 nghiệm phân biệt và khác \(-3\)
Ta có: \(x^2-2x+m-1=0\) có 2 nghiệm phân biệt khi và chỉ khi \(\text{△}>0\Leftrightarrow8-4m>0\Leftrightarrow m< 2\)
Gọi \(x_1\) và \(x_2\) là 2 nghiệm của phương trình \(x^2-2x+m-1=0\).Theo hệ thức Vi-ét ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{-2}{1}=2\\x_1x_2=\dfrac{m-1}{1}=m-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_1=2-x_2\\\left(2-x_2\right).x_2=m-1\end{matrix}\right.\)
Nếu \(x_2\ne-3\) thì \(m-1\ne-15\Leftrightarrow m\ne-14\).
Do vai trò của \(x_1\) và \(x_2\) là như nhau nên \(x^2-2x+m-1=0\) có 2 nghiệm phân biệt và khác \(-3\) khi và chỉ khi: \(\left\{{}\begin{matrix}m< 2\\m\ne-14\end{matrix}\right.\)
sao lại toán 8
có |1 - x| >= 0 ; |2x - 1| >= 0 ; 5> 0
=> |1 - x| + |2x - 1| > 5 <=> 1 - x + 2x - 1 > 5
<=> x > 5
Vậy bất phương trình có nghiệm là x > 5