K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2018

theo bài ra ta có 

\(\frac{1}{x}+\frac{1}{2y}+\frac{1}{3z}=0\Leftrightarrow6yz+3xz+2xy=0\)       (1)

\(x+2y+3z=4\Leftrightarrow\left(x+2y+3z\right)^2=16\)

                                       \(\Leftrightarrow x^2+4y^2+9z^2+2\left(6yz+3xz+2xy\right)=16\)(2)

                               thay  (1) vào (2)  ta được 

\(x^2+4y^2+9z^2=16\)

22 tháng 6 2023

Bài `10`

`a,` Ta có : `x/2=y/3=>(4x)/8 =(3y)/9`

ADTC dãy tỉ số bằng nhau ta có :

`(4x)/8 =(3y)/9=(4x-3y)/(8-9)=(-2)/(-1)=2`

`=> x/2=2=>x=2.2=4`

`=>y/3=2=>y=2.3=6`

`b,` Ta có : `2x=5y=>x/5=y/2`

ADTC dãy tỉ số bằng nhau ta có :

`x/5=y/2=(x+y)/(5+2)=-42/7=-6`

`=>x/5=-6=>x=-6.5=-30`

`=>y/2=-6=>y=-6.2=-12`

Bài `11`

`a,` Ta có : `x/3=y/4=z/6=>x/3=(2y)/8 =(3z)/18`

ADTC dãy tỉ số bằng nhau ta có :

`x/3=(2y)/8=(3z)/18=(x+2y-3z)/(3+8-18)=(-14)/(-7)=2`

`=>x/3=2=>x=2.3=6`

`=>y/4=2=>y=2.4=8`

`=>z/6=2=>z=2.6=12`

Bạn đăng lại `2` câu sau nhe , mình ko hiểu `x=y-z` với `15x-5y=3x=45`

`d,` Ta có :

`x/2=y/3=>x/4=y/6`

`y/2=z/3=>y/6=z/9`

`-> x/4=y/6=z/9=>x/4=(2y)/12 =(3z)/27`

ADTC dãy tỉ số bằng nhau ta có :

`x/4=(2y)/12=(3z)/27=(x-2y+3z)/(4-12+27)=19/19=1`

`=>x/4=1=>x=1.4=4`

`=>y/6=1=>y=1.6=6`

`=>z/9=1=>z=1.9=9`

4 tháng 7 2021

Ta có: \(\left|2x-3y\right|+\left|2y+3z\right|+\left|x+y+\frac{x}{z}\right|\ge0\left(\hept{\begin{cases}\forall x,y,z\\z\ne0\end{cases}}\right)\)

\(\Rightarrow\hept{\begin{cases}2x-3y=0\\2y+3z=0\\x+y+\frac{x}{z}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}y\\z=-\frac{2}{3}y\\\frac{3}{2}y-\frac{2}{3}y+\frac{\frac{3}{2}y}{-\frac{2}{3}y}=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{3}{2}y\\z=-\frac{2}{3}y\\\frac{5}{6}y=\frac{9}{4}\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{3}{2}y=\frac{81}{20}\\y=\frac{27}{10}\\z=\frac{-9}{5}\end{cases}}\)

9 tháng 1 2020

Ta có : \(\frac{x+y+z-3t}{t}=\frac{y+z+t-3x}{x}=\frac{z+t+x-3y}{y}=\frac{t+x+y-3z}{z}\)

=> \(\frac{x+y+z-3t}{t}+4=\frac{y+z+t-3x}{x}+4=\frac{x+z+t-3y}{y}+4=\frac{x+y+t-3z}{z}+4\)

=> \(\frac{x+y+z+t}{t}=\frac{x+y+z+t}{x}=\frac{x+y+z+t}{y}=\frac{x+y+z+t}{z}\)

=> \(\frac{2012}{x}=\frac{2012}{y}=\frac{2012}{z}=\frac{2012}{t}=\frac{2012+2012+2012+2012}{x+y+z+t}=\frac{2012.4}{2012}=4\)

=> x = y = z = t = 403

Khi đó A = x + 2y - 3z + t

              = x + 2x - 3x + x

             = x = 403

Vậy x = 403 

1 tháng 1 2016

3x²y²z² = x³y³ y³z³ z³x³ 
(3x²y²z²) / (x³y³ y³z³ z³x³) = 1
3.[(x²y²z²) / (x³y³ y³z³ z³x³)] = 1
(x²y²z²) / (x³y³ y³z³ z³x³) = 1/3
(x²y²z²) / (x³y³) (x²y²z²) / (y³z³) (x²y²z²) / (z³x³) = 1/3
z²/(xy) x/(yz) y²/(zx) = 1/3
Vậy x²/(yz) y²/(xz) z²/(xy) = 1/3

20 tháng 7 2019

Những hằng đẳng thức đáng nhớ (Tiếp 2)