\(\sqrt{x-1}+\sqrt{9-x}+2\sqrt{-x^2+10x-9}=12\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6: \(\Leftrightarrow2x^2+3x+9+\sqrt{2x^2+3x+9}-42=0\)
Đặt \(\sqrt{2x^2+3x+9}=a\left(a>=0\right)\)
Phương trình sẽ trở thành là: a^2+a-42=0
=>(a+7)(a-6)=0
=>a=-7(loại) hoặc a=6(nhận)
=>2x^2+3x+9=36
=>2x^2+3x-27=0
=>2x^2+9x-6x-27=0
=>(2x+9)(x-3)=0
=>x=3 hoặc x=-9/2
8: \(\Leftrightarrow x-1-2\sqrt{x-1}+1+y-2-4\sqrt{y-2}+4+z-3-6\sqrt{z-3}+9=0\)
=>\(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)
=>\(\left\{{}\begin{matrix}\sqrt{x-1}-1=0\\\sqrt{y-2}-2=0\\\sqrt{z-3}-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\y-2=4\\z-3=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=6\\z=12\end{matrix}\right.\)
giải các phương trình a)\(\sqrt{2x-1}+x^2-3x+1=0\)
b)\(\sqrt{x-1}+\sqrt{9-x}+2\sqrt{-x^2+10x-9}=12\)
a.
\(ĐK:x\ge\frac{1}{2}\)
PT\(\Leftrightarrow-\left(2x-1-\sqrt{2x-1}+\frac{1}{4}\right)+x^2-x+\frac{1}{4}=0\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2-\left(\sqrt{2x-1}-\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow\left(x+\sqrt{2x-1}-1\right)\left(x-\sqrt{2x-1}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+\sqrt{2x-1}=1\\x=\sqrt{2x-1}\end{cases}}\)
Chắt duoc roi he
b.
\(ĐK:1\le x\le9\)
\(\Rightarrow\hept{\begin{cases}a+b+2ab=12\\a^2+b^2=7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(a+b\right)^2+\left(a+b\right)-12=0\\a^2+b^2=7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(a+b-3\right)\left(a+b+4\right)=0\\a^2+b^2=7\end{cases}}\)
Loai \(a+b+4=0\)
a: TH1: x>=2
A=x+x-2=2x-2
TH2: x<2
A=x+2-x=2
b: TH1: x>=3
A=x-3-x=-3
TH2: x<3
A=3-x-x=-2x+3
c: TH1: x>=1
C=x-x+1=1
TH2: x<1
C=x+x-1=2x-1
d: TH1: m>=3
C=m-3-2m=-3-m
TH2: m<3
C=-m+3-2m=-3m+3
e: TH1: m>=1
E=m-m+1=1
TH2: m<1
E=m+m-1=2m-1
1, \(\sqrt{4-4x+x^2}=3\)
\(\Leftrightarrow\sqrt{\left(2+x\right)^2}=3\)
\(\Leftrightarrow\left|2+x\right|=3\)
TH1: \(\left|2-x\right|=2-x\) với \(2-x\ge0\Leftrightarrow x\le2\)
Pt trở thành:
\(2-x=3\) (ĐK: \(x\le2\) )
\(\Leftrightarrow x=2-3\)
\(\Leftrightarrow x=-1\left(tm\right)\)
TH2: \(\left|2-x\right|=-\left(2-x\right)\) với \(2-x< 0\Leftrightarrow x>2\)
Pt trở thành:
\(-\left(2-x\right)=3\) (ĐK: \(x>2\))
\(\Leftrightarrow-2+x=3\)
\(\Leftrightarrow x=3+2\)
\(\Leftrightarrow x=5\left(tm\right)\)
Vậy \(S=\left\{-1;5\right\}\)
a) \(\sqrt {{x^2} - 7x} = \sqrt { - 9{x^2} - 8x + 3} \)
\(\begin{array}{l} \Rightarrow {x^2} - 7x = - 9{x^2} - 8x + 3\\ \Rightarrow 10{x^2} + x - 3 = 0\end{array}\)
\( \Rightarrow x = - \frac{3}{5}\) và \(x = \frac{1}{2}\)
Thay hai nghiệm vừa tìm được vào phương trình \(\sqrt {{x^2} - 7x} = \sqrt { - 9{x^2} - 8x + 3} \) thì ta thấy chỉ có nghiệm \(x = - \frac{3}{5}\) thỏa mãn phương trình
Vậy nghiệm của phương trình là \(x = - \frac{3}{5}\)
b) \(\sqrt {{x^2} + x + 8} - \sqrt {{x^2} + 4x + 1} = 0\)
\(\begin{array}{l} \Rightarrow \sqrt {{x^2} + x + 8} = \sqrt {{x^2} + 4x + 1} \\ \Rightarrow {x^2} + x + 8 = {x^2} + 4x + 1\\ \Rightarrow 3x = 7\\ \Rightarrow x = \frac{7}{3}\end{array}\)
Thay \(x = \frac{7}{3}\) vào phương trình \(\sqrt {{x^2} + x + 8} - \sqrt {{x^2} + 4x + 1} = 0\) ta thấy thỏa mãn phương trình
Vậy nghiệm của phương trình đã cho là \(x = \frac{7}{3}\)
c) \(\sqrt {4{x^2} + x - 1} = x + 1\)
\(\begin{array}{l} \Rightarrow 4{x^2} + x - 1 = {\left( {x + 1} \right)^2}\\ \Rightarrow 4{x^2} + x - 1 = {x^2} + 2x + 1\\ \Rightarrow 3{x^2} - x - 2 = 0\end{array}\)
\( \Rightarrow x = - \frac{2}{3}\) và \(x = 1\)
Thay hai nghiệm trên vào phương trình \(\sqrt {4{x^2} + x - 1} = x + 1\) ta thấy cả hai nghiệm đều thỏa mãn
Vậy nghiệm của phương trình trên là \(x = - \frac{2}{3}\) và \(x = 1\)
d) \(\sqrt {2{x^2} - 10x - 29} = \sqrt {x - 8} \)
\(\begin{array}{l} \Rightarrow 2{x^2} - 10x - 29 = x - 8\\ \Rightarrow 2{x^2} - 11x - 21 = 0\end{array}\)
\( \Rightarrow x = - \frac{3}{2}\) và \(x = 7\)
Thay hai nghiệm \(x = - \frac{3}{2}\) và \(x = 7\) vào phương trình \(\sqrt {2{x^2} - 10x - 29} = \sqrt {x - 8} \) ta thấy cả hai đều không thảo mãn phương trình
Vậy phương trình \(\sqrt {2{x^2} - 10x - 29} = \sqrt {x - 8} \) vô nghiệm
Đặt \(\sqrt{x-1}=a,\sqrt{9-x}=b\)
\(\Leftrightarrow\hept{\begin{cases}a^2+b^2=8\\a+b+2ab=12\end{cases}\Rightarrow a+b=\sqrt{8+2ab}}\)
\(\Leftrightarrow\sqrt{8+2ab}+2ab=12\)
Bạn tự giải nha
\(\Rightarrow ab=4\Rightarrow a+b=4\)
\(\Leftrightarrow\hept{\begin{cases}a+b=4\\ab=4\end{cases}\Rightarrow\hept{\begin{cases}a=2\\b=2\end{cases}\Leftrightarrow}\hept{\begin{cases}\sqrt{x-1}=2\\\sqrt{9-x}=2\end{cases}\Rightarrow}x=5}\)(tm)
Vậy x=5