\(CMR:\)\(1+2+2^2+2^3+....+2^{10}+2^{11}⋮9\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)=3^1+(3^2+3^3+3^4)+(3^5+3^6+3^7)+....+(3^58+3^59+3^60)
=3^1+(3^2.1+3^2.3+3^2.9)+(3^5.1+3^5.3+3^5.9)+......+(3^58.1+3^58.3+3^58.9)
=3^1+3^2.(1+3+9)+3^5.(1+3+9)+.....+3^58.(1+3+9)
=3+3^2.13+3^5.13+.........+3^58.13
=3.13.(3^2+3^5+....+3^58)
vi tich tren co thua so 13 nen tich do chia het cho 13
=
bai1
a) A=(31+32)+(33+34)+...+(359+360)
=(3^1.1+3^1.3)+...+(3^59.1+3^59.2)
=3^1.(1+3)+...+3^59.(1+3)
=3^1.4+....+3^59.4
=4.(3^1+...+3^59)
vi tich tren co thua so 4 nen tich do chia het cho 4
C=20+21+2.(22+23+ ... +29+210)+211+212
\(2C=2^1+2^2+2.\left(2^3+2^4+...+2^{10}+2^{11}\right)+2^{12}+2^{13}\)
\(\Rightarrow2C-C=\left(2^{13}+2^2\right)-\left(2^{11}+2^3\right)\)
Vậy C = 213 + 22 - 211 - 23
A = ( 1 + 2^1 ) + ( 2^2 + 2^3 ) + ... + ( 2^10 + 2^11 )
A = 3 . 1 + 3 . 4 + ... + 3 . 1024
A = 3 ( 1 + 4 + ... + 1024 )
=> A chia hết cho 3
\(A=\left(1+2\right)+\left(2^2+2^3\right)+...........+\left(2^{10}+2^{11}\right)\)
\(=3+2^2.3+.............+2^{10}.3\)
\(=\left(1+2^2+........+2^{10}\right).3\) chia hết cho 3
Vậy A chia hết cho 3
\(1+2+2^2+2^3+...+2^9\)
\(=\left(1+2^3\right)+\left(2+2^4\right)+...+\left(2^6+2^9\right)\)
\(=\left(1+2^3\right)+2\cdot\left(1+2^3\right)+...+2^6\cdot\left(1+2^3\right)\)
\(=9+2\cdot9+...+2^6\cdot9\)
\(=9\cdot\left(1+2+...+2^6\right)⋮9\) ( ĐPCM )