K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2022

a. M(x) + N(x) = 6x– 2x2 + 3x +10 - 6x3 + x2 – 6x -10

= (6x3 - 6x3 ) + ( -2x2 + x2 ) + ( 3x - 6x ) + ( 10 - 10 )

= -x2 - 3x 

M(x) - N(x) = 6x– 2x2 + 3x +10 - ( –6x3 + x2 – 6x -10)

= 6x– 2x2 + 3x +10 + 6x3 - x2 + 6x +10

= (6x3 + 6x3 ) + ( -2x2 - x2 ) + ( 3x + 6x) + ( 10 + 10)

= 12x3 - 3x2 + 9x + 20

b. Đặt -x2 - 3x  = 0

=> -x2 + (-3)x = 0

=> -x2 + 3.-x = 0

=> -x(-x+ 3) = 0

=>\(\left[{}\begin{matrix}-x=0\\-x+3=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\-x=-3\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

Vậy nghiệm của đa thức trên là 0 hoặc -3

a) M(X) + N(x)= (6x– 2x2 + 3x +10)

+ (–6x3 + x2 – 6x -10)

M(x) + N(x)=  – x2 - 3x.

M(x) + N(x)= (6x– 2x2 + 3x +10)

- (–6x3 + x2 – 6x -10)

M(x) - N(x)= 12x3 - x2 + 9x + 20.

b) Nghiệm của M(x) + N(x)= x= 0, -3.

(Nghỉ dịch từ ngày 28/2/2022)Bài 1:a) Cho hai đa thức:   M = 2x2 – 2xy – 3y2 + 1;     N = x2 – 2xy + 3y2 – 1Tính M + N; M – N.b) Cho hai đa thức: P(x) = x3 – 6x + 2; Q(x) = 2x2 - 4x3 + x - 5+ Tính P(x) + Q(x)+ Tính P(x) - Q(x)Bài 2: Tìm x biết:a) (x - 8 )( x3+ 8) = 0;               b) (4x - 3) – ( x + 5) = 3(10 - x)Bài 3: Cho đa thức:   P(x) = 5x3 + 2x4 – x2 + 3x2 – x3 – 2x4 + 1 – 4x3.a) Thu gọn và xắp sếp...
Đọc tiếp

(Nghỉ dịch từ ngày 28/2/2022)

Bài 1:

a) Cho hai đa thức:   M = 2x2 – 2xy – 3y2 + 1;     N = x2 – 2xy + 3y2 – 1

Tính M + N; M – N.

b) Cho hai đa thức: P(x) = x3 – 6x + 2; Q(x) = 2x2 - 4x3 + x - 5

+ Tính P(x) + Q(x)

+ Tính P(x) - Q(x)

Bài 2: Tìm x biết:

a) (x - 8 )( x3+ 8) = 0;               b) (4x - 3) – ( x + 5) = 3(10 - x)

Bài 3: Cho đa thức:   P(x) = 5x3 + 2x4 – x2 + 3x2 – x3 – 2x4 + 1 – 4x3.

a) Thu gọn và xắp sếp các hạng tử của đa thức trên theo lũy thừa giảm của biến.

b) Tính P(1) và P(–1).

Bài 4:  Tính nhanh (nếu có thể):

 

Bài 5: Cho tam giác ABC có AB = AC = 5cm, BC = 6cm. Đường trung tuyến AM xuất phát từ đỉnh A của tam giác ABC.

a) Chứng minh ΔAMB = ΔAMC và AM là tia phân giác của góc A.

b) Chứng minh AM vuông góc với BC.

c) Tính độ dài các đoạn thẳng BM và AM.

d) Từ M vẽ ME AB (E thuộc AB) và MF AC (F thuộc AC). Tam giác MEF là tam giác gì? Vì sao?

Bài 6: Cho ΔABC cân có AB = AC = 5cm, BC = 8cm. Kẻ AH vuông góc với BC.

a) Chứng minh: HB = HC.

b) Tính độ dài AH.

c) Kẻ HD vuông góc với AB (D∈AB), kẻ HE vuông góc với AC (E∈AC).

Chứng minh ΔHDE cân.

d) So sánh HD và HC.

1

Bài 2:

a: \(\left(x-8\right)\left(x^3+8\right)=0\)

=>\(\left[{}\begin{matrix}x-8=0\\x^3+8=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=8\\x^3=-8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)

b: \(\left(4x-3\right)-\left(x+5\right)=3\left(10-x\right)\)

=>\(4x-3-x-5=30-3x\)

=>3x-8=30-3x

=>6x=38

=>\(x=\dfrac{38}{6}=\dfrac{19}{3}\)

Bài 6:

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó: ΔAHB=ΔAHC

=>HB=HC

b: Ta có: HB=HC

H nằm giữa B và C

Do đó: H là trung điểm của BC

=>\(HB=HC=\dfrac{8}{2}=4\left(cm\right)\)

ΔAHB vuông tại H

=>\(AH^2+HB^2=AB^2\)

=>\(AH^2=5^2-4^2=9\)

=>\(AH=\sqrt{9}=3\left(cm\right)\)

c: Ta có: ΔAHB=ΔAHC

=>\(\widehat{BAH}=\widehat{CAH}\)

Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

\(\widehat{DAH}=\widehat{EAH}\)

Do đó: ΔADH=ΔAEH

=>HD=HE

=>ΔHDE cân tại H

d: Ta có: HD=HE
HE<HC(ΔHEC vuông tại E)

Do đó:HD<HC

19 tháng 3 2022

a, \(M+N=2x^2+x^2-2xy-2xy-3y^2+3y^2+1-1=3x^2-4xy\)

\(M-N=2x^2-x^2-2xy+2xy-3y^2-3y^2+1+1=x^2-6y^2+2\)

b, \(P\left(x\right)+Q\left(x\right)=x^3-4x^3+2x^2-6x+x+2-5=-3x^3+2x^2-5x-3\)

\(P\left(x\right)-Q\left(x\right)=x^3+4x^3-2x^2-6x-x+2+5=5x^3-2x^2-7x+7\)

31 tháng 7 2021

cộng 2 vế vào ta có: M(x)+N(x)+M(x)-N(x)=2x+4+6x

                                 ⇒ 2M(x)=8x+4

                                 ⇒M(x)=4x+2

M(x)+N(x)=2x+4

⇒4x+2+N(x)=2x+4

⇒N(x)=-2x-2

31 tháng 7 2021

27 tháng 7 2016

a) M(x)+N(x)=10x4-2x2-x+14

b) nghiệm M(x)-N(x)=10x2-3x=0<=> x=0 hoặc x=3/10

c) ta có: 

-P(X)+M(X)=-N(x)

<=> P(x)=M(x)+N(x)=10X4-2x2-x+14   (theo kết quả câu a )

a: \(M\left(x\right)=2x^2+3\)

\(N\left(x\right)=3x^3-2x^2+x\)

b: \(M\left(x\right)+N\left(x\right)=3x^3+x+3\)

\(M\left(x\right)-N\left(x\right)=2x^2+3-3x^3+2x^2-x=-3x^3+2x^2-x+3\)

14 tháng 5 2022

Câu c : M(x)=2x^2+3 

ta có : x≥ 0 với mọi x 

=> 2x≥ 0 => 2x + 3 ≥ 3 > 0=> M(x) ≠ 0 với mọi xVậy đa thức M(x) không có nghiệm

a) Ta có: \(M\left(x\right)=3x^3+x^2+4x^4-x-3x^3+5x^4+2x^2-6\)

\(=\left(4x^4+5x^4\right)+\left(3x^3-3x^3\right)+\left(x^2+2x^2\right)-x-6\)

\(=9x^4+3x^2-x-6\)

Ta có: \(N\left(x\right)=-2x^2-x^4+4x^3-x^2-5x^3+3x+5+x\)

\(=-x^4+\left(4x^3-5x^3\right)+\left(-2x^2-x^2\right)+\left(3x+x\right)+5\)

\(=-x^4-x^3-3x^2+4x+5\)

c) Ta có: M(x)+N(x)

\(=9x^4+3x^2-x-6-x^4-x^3-3x^2+4x+5\)

\(=8x^4-x^3+3x-1\)