cho tam giác ABC nhọn hai đường cao BD CE cắt nhau tại H tia AH cắt BC tại D
vẽ trung tuyến BM của tam giác ABC cắt KI tại N chứng minh MN//EF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHB và ΔAHC có
AB=AC
góc BAH=góc CAH
AH chung
=>ΔAHB=ΔAHC
b: Xet ΔABC có
AH,BD là trung tuyến
AH cắt BD tại G
=>G là trọng tâm
c: Xét ΔABC có
H là trung điểm của BC
HE//AC
=>E là trung điểm của AB
=>C,G,E thẳng hàng
Gợi ý:
*MD cắt AH tại G.
Dễ dàng chứng minh các tam giác AMB, AFB, ADB nội tiếp đường tròn đường kính AB.
\(\Rightarrow\)5 điểm A,M,F,D,B nằm trên đường tròn.
Xét đường tròn \(\left(AMFDB\right)\) có: \(\widehat{ADM}=\widehat{ABM}\)
Xét (O) có: \(\widehat{BAM}=\widehat{ACB}\)
Ta có: \(\left\{{}\begin{matrix}\widehat{ABM}+\widehat{BAM}=90^0\\\widehat{ACB}+\widehat{FAC}=90^0\end{matrix}\right.\) mà \(\widehat{BAM}=\widehat{ACB}\)
\(\Rightarrow\widehat{ABM}=\widehat{FAC}\) \(\Rightarrow\widehat{ADM}=\widehat{FAC}\)
\(\Rightarrow\Delta AGD\) cân tại G. Từ đây có thể chứng minh dễ dàng G là trung điểm AH.
*NE cắt AH tại G'. Chứng minh tương tự G' là trung điểm AH.
\(\Rightarrow G\equiv G'\) nên MD,NE,AH đồng quy.