giải hệ phương trình \(\hept{\begin{cases}x^2-xy=6\\3x^2+2xy-3y^2=30\end{cases}}\)
giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}x^2+2xy+2y^2+3x=0\left(1\right)\\xy+y^2+3y+1=0\left(2\right)\end{cases}}\)
Lấy pt (1)+2*pt (2) ta được:
\(\left(x+2y\right)^2+3\left(x+2y\right)+2=0\)
\(\Leftrightarrow\left(x+2y+1\right)\left(x+2y+2\right)=0\)
\(y^2-2y-1=0\)\(\Rightarrow\orbr{\begin{cases}y=1+\sqrt{2}\\y=1-\sqrt{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3-2\sqrt{2}\\x=-3+2\sqrt{2}\end{cases}}\)
\(y^2-y-1=0\Rightarrow\orbr{\begin{cases}y=\frac{1-\sqrt{5}}{2}\\y=\frac{1+\sqrt{5}}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3+\sqrt{5}\\x=-3-\sqrt{5}\end{cases}}\)
Vậy hpt có 4 nghiệm (x;y) là : \(\left(-3-2\sqrt{2};1+\sqrt{2}\right);\left(-3+2\sqrt{2};1-\sqrt{2}\right)\)\(;\left(-3+\sqrt{5};\frac{1-\sqrt{5}}{2}\right);\left(-3-\sqrt{5};\frac{1+\sqrt{5}}{2}\right)\)
\(a,\hept{\begin{cases}\left(x-y\right)^2=1\\2x^2+2y^2-2xy-y=0\end{cases}}\)
Xét từng TH với x-y=1 và x-y=-1
\(b,\hept{\begin{cases}\left(x-1\right)\left(y+2\right)=0\\xy-3x+2y=0\end{cases}}\)
Xét từng TH x=1 và y=-2
2 \(\hept{\begin{cases}\frac{x^2+1}{y}=\frac{y^2+1}{y}\left(1\right)\\x^2+3y^2=4\left(2\right)\end{cases}}\)
ĐK \(x,y\ne0\)
Từ \(\frac{y^2+1}{y}=\frac{x^2+1}{x}\Leftrightarrow xy^2+x=x^2y+y\Leftrightarrow\left(xy-1\right)\left(x-y\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=y\\xy=1\end{cases}}\)
+ thay \(x=y\)vào (2) ta dc ..................
+xy=1 suy ra 1=1/y thay vao 2 ta dc............
\(3x^2+2xy-3y^2=30=5\cdot6=5x^2-5xy\\ \Leftrightarrow-2x^2+7xy-3y^2=0\)
Đặt x=t*y
Vậy pt tương đương với\(\Rightarrow\orbr{\begin{cases}y=0\\\orbr{\begin{cases}t=3\\t=\frac{1}{2}\end{cases}}\end{cases}}\)sau sẽ ra 3 trường hợp :
y=0
t=3 hoặc t=1/2
TH1: y=0 ta dễ tìm được x= \(\pm\sqrt{6}\)\(\Leftrightarrow-2t^2y^2+7ty^2-3y^2=0\\ \Leftrightarrow y^2\left(2t^2-7t+3\right)=0\\ \Leftrightarrow\orbr{\begin{cases}y=0\\\orbr{\begin{cases}t=3\\t=\frac{1}{2}\end{cases}}\end{cases}}\)(thử lại sẽ loại)
TH2: t=3 thay sẽ được \(\orbr{\begin{cases}x=3,y=1\\x=-3,y=-1\end{cases}\left(tm\right)}\)
TH3: t=1/2 (loại)
do olm của mk có vấn đề nên ko viết rõ được mong bạn thông cảm ạ