cho tam giác EMN vuông tại E :EM=3cm, EN=4cmđường phân giác EH cắt MN tại H.Từ H kẻ HF vuông góc với EN (F thuộc EN)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) EH là phân giác nên ta có:
\(\frac{HM}{HN}=\frac{EM}{EN}=\frac{3}{4}\)
b) Áp dụng định lí pitago cho tam giác EMN vuông tại E ta có:
\(MN^2=ME^2+EN^2=25\Rightarrow MN=5\)
c) Ta có: \(HM=\frac{3}{4}HN\)
Mặt khác: HM+HN=MN=5=> \(\frac{3}{4}HN+HN=5\Leftrightarrow HN=\frac{20}{7}\)và \(HM=\frac{3}{4}.\frac{20}{7}=\frac{15}{7}\)
d) Xét tam giác EMN vuông tại E và tam giác FHN vuông tại H có góc N chung
suy ra hai tam giác này đồng dạng theo trường hợp góc góc
Bài 10. Cho tam giác DEF vuông tại D, có . Tia phân giác của góc F cắt DE tại I. Kẻ IH vuông góc với EF tại H ( ).
a. Chứng minh: DFI = HFI
b. DFH là tam giác gì? Vì sao?.
c. Qua E kẻ đường thẳng vuông góc với DH tại N. Chứng minh EN // FI.
Bài 11. Cho cân ở A. Trên tia đối của các tia BC và CB lấy thứ tự hai điểm D và E sao cho BD = CE.
a) Chứng minh cân
b) Gọi M là trung điểm của BC. Chứng minh AM là tia phân giác của .
c) Từ B và C kẻ BH, CK theo thứ tự vuông góc với AD và AE Chứng minh: BH = CK.
d) Chứng minh ba đường thẳng AM, BH, CK đồng quy. Đây ạ
a)
Ta có: \(\widehat{DBM}=\widehat{ABC}\)(hai góc đối đỉnh)
\(\widehat{ECN}=\widehat{ACB}\)(hai góc đối đỉnh)
mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)
nên \(\widehat{DBM}=\widehat{ECN}\)
Xét ΔDBM vuông tại D và ΔECN vuông tại E có
DB=EC(gt)
\(\widehat{DBM}=\widehat{ECN}\)(cmt)
Do đó: ΔDBM=ΔECN(cạnh góc vuông-góc nhọn kề)
Suy ra: DM=EN(hai cạnh tương ứng)
Đề bài thiếu câu hỏi rồi bạn ơi