K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2019

\(=\frac{2}{15}:3=\frac{2}{45}\)

9 tháng 4 2019

-0.1010 nha

h

24 tháng 12 2016

a) \(A=\frac{x+2}{x+3}-\frac{5}{x^2+x-6}+\frac{1}{2-x}\left(ĐK:x\ne-3;x\ne2\right)\)

\(=\frac{x+2}{x+3}-\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{1}{x-2}\)

\(=\frac{\left(x+2\right)\left(x-2\right)-5-\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}\)

\(=\frac{x^2-4-5-x-3}{\left(x-2\right)\left(x+3\right)}=\frac{x^2-x-12}{\left(x-2\right)\left(x+3\right)}=\frac{\left(x-4\right)\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}=\frac{x-4}{x-2}\)

Để \(A=-\frac{3}{4}\)

\(\Leftrightarrow\frac{x-4}{x-2}=-\frac{3}{4}\)

\(\Leftrightarrow4\left(x-4\right)=-3\left(x-2\right)\)

\(\Leftrightarrow4x-16=-3x+6\)

\(\Leftrightarrow7x=22\Leftrightarrow x=\frac{22}{7}\left(tm\right)\)

Vậy \(x=\frac{22}{7}\) thì \(A=-\frac{3}{4}\)

b) \(A=\frac{x-4}{x-2}=\frac{\left(x-2\right)-2}{x-2}=1-\frac{2}{x-2}\)

Để \(A\in Z\Rightarrow\frac{2}{x-2}\in Z\Rightarrow x-2\inƯ\left(2\right)\)

Mà: \(Ư\left(2\right)=\left\{1;-1;2;-2\right\}\)

=> \(x-2\in\left\{1;-1;2;-2\right\}\)

+) \(x-2=1\Rightarrow x=3\left(tm\right)\)

+) \(x-2=-1\Rightarrow x=1\left(tm\right)\)

+) \(x-2=2\Rightarrow x=4\left(tm\right)\)

+) \(x-2=-2\Rightarrow x=0\left(tm\right)\)

Vậy \(x\in\left\{0;1;3;4\right\}\) thì \(A\in Z\)

25 tháng 12 2016

A=x+2/x+3-5/(x-2)(x+3)-1/x-2

A=(x+2)(x-2)-5-x-3/(x-2)(x+3)

A=x^2-4-5-x-3/(x-2)(x+3)

A=x^2-x-12/(x-2)(x+3)

A=(x+3)(x-4)/(x-2)(x+3)

A=x-4/x-2

Để A=-3/4 thì x-4/x-2=-3/4

Từ đó suy ra (x-4)4=-3(x-2)

4x-16=-3x+6

7x=22

x=22/7

b,Do A nguyên nên x-4/x-2 nguyên(x#2)

suy ra x-4-x+2 chia hết cho x-2

nên 2 chia hết cho x-2

mà ước 2=-2;-1;1;2

nên x=0;1;3;4

28 tháng 8 2016

D = 3x/5 <0  => x < 0

E = (x-2)/(x-6) <0  => x<6 ĐK:  x khác 6

F < 0  => x< +-1

27 tháng 3 2020

Áp dụng bất đẳng thức AM-GM ta có:

\(x^5+\frac{1}{x}+1+1\ge4\sqrt[4]{x^5.\frac{1}{x}}=4x\)

Chứng minh tương tự: \(y^5+\frac{1}{y}+1+1\ge4\sqrt[4]{y^5.\frac{1}{y}}=4y\)

\(z^5+\frac{1}{z}+1+1\ge4\sqrt[4]{z^5.\frac{1}{z}}=4z\)

\(\Rightarrow T+6\ge4\left(x+y+z\right)=12\)

\(\Leftrightarrow T\ge6\)

Dấu " = " xảy ra <=> x=y=z=1

\(M=\left(\dfrac{1}{3}\right)^{12}\cdot\left(\dfrac{1}{3}\right)^{-15}+\left(\dfrac{2}{5}\right)^{-4}\cdot5^{-4}\cdot32\)

\(=\left(\dfrac{1}{3}\right)^{-3}+2^{-4}\cdot32\)

\(=27+\dfrac{32}{16}=27+2=29\)

29 tháng 10 2017

Ta có : |x-2013| ≥ 0 với mọi x

=> |x-2013|+2≥ 2

=>\(\frac{2016}{\left|x-2013\right|+2}\)≤ \(\frac{2016}{2}\)

=> Max A =1008

<=> x-2013=0 

<=> x=2013

6 tháng 8 2018

=1008

nha anh của cậu rất đẹp tớ rất thích susuca

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

a)

\(\begin{array}{l}A = \left( {2 + \frac{1}{3} - \frac{2}{5}} \right) - \left( {7 - \frac{3}{5} - \frac{4}{3}} \right) - \left( {\frac{1}{5} + \frac{5}{3} - 4} \right).\\A = \left( {\frac{{30}}{{15}} + \frac{5}{{15}} - \frac{6}{{15}}} \right) - \left( {\frac{{105}}{{15}} - \frac{9}{{15}} - \frac{{20}}{{15}}} \right) - \left( {\frac{3}{{15}} + \frac{{25}}{{15}} - \frac{{60}}{{15}}} \right)\\A = \frac{{29}}{{15}} - \frac{{76}}{{15}} - \left( {\frac{{ - 32}}{{15}}} \right)\\A = \frac{{29}}{{15}} - \frac{{76}}{{15}} + \frac{{32}}{{15}}\\A = \frac{{ - 15}}{{15}}\\A =  - 1\end{array}\)

b)

\(\begin{array}{l}A = \left( {2 + \frac{1}{3} - \frac{2}{5}} \right) - \left( {7 - \frac{3}{5} - \frac{4}{3}} \right) - \left( {\frac{1}{5} + \frac{5}{3} - 4} \right)\\A = 2 + \frac{1}{3} - \frac{2}{5} - 7 + \frac{3}{5} + \frac{4}{3} - \frac{1}{5} - \frac{5}{3} + 4\\A = \left( {2 - 7 + 4} \right) + \left( {\frac{1}{3} + \frac{4}{3} - \frac{5}{3}} \right) + \left( { - \frac{2}{5} + \frac{3}{5} - \frac{1}{5}} \right)\\A =  - 1 + 0 + 0 =  - 1\end{array}\)

DD
22 tháng 6 2021

ĐK: \(x\ne0,x\ne\pm1\).

\(B=\frac{4x}{x+1}+\frac{x}{1-x}+\frac{2x}{x^2-1}=\frac{4x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}-\frac{x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{2x}{\left(x+1\right)\left(x-1\right)}\)

\(=\frac{4x^2-4x-x^2-x+2x}{\left(x+1\right)\left(x-1\right)}=\frac{3x^2-3x}{\left(x+1\right)\left(x-1\right)}=\frac{3x}{x+1}\)

\(AB=\frac{x-2}{x}.\frac{3x}{x+1}=\frac{3x-6}{x+1}\)

\(P=m\Leftrightarrow\frac{3x-6}{x+1}=m\Rightarrow m\left(x+1\right)=3x-6\)

\(\Leftrightarrow x\left(m-3\right)=-6-m\)

Với \(m=3\)thì \(0x=-9\)phương trình vô nghiệm. 

Với \(m\ne3\)\(x=\frac{-6-m}{m-3}\)

Đối chiếu điều kiện: 

\(x\ne0,x\ne\pm1\)suy ra \(\hept{\begin{cases}\frac{-6-m}{m-3}\ne0\\\frac{-6-m}{m-3}\ne1\\\frac{-6-m}{m-3}\ne-1\end{cases}}\Leftrightarrow\hept{\begin{cases}m\ne-6\\m\ne-\frac{3}{2}\end{cases}}\).

Vậy \(m\ne3,m\ne-6,m\ne\frac{-3}{2}\)thì thỏa mãn ycbt. 

a) \(A=\frac{1}{a^2+a}+\frac{1}{a^2+3a+2}+\frac{1}{a^2+5a+6}+\frac{1}{a^2+7a+12}+\frac{1}{a^2+9a+20}\)

\(A=\frac{1}{a\left(a+1\right)}+\frac{1}{\left(a+1\right)\left(a+2\right)}+\frac{1}{\left(a+2\right)\left(a+3\right)}+\frac{1}{\left(a+3\right)\left(a+4\right)}+\frac{1}{\left(a+4\right)\left(a+5\right)}\)

\(A=\frac{1}{a}-\frac{1}{a+1}+\frac{1}{a+1}-\frac{1}{a+2}+\frac{1}{a+2}-\frac{1}{a+3}+\frac{1}{a+3}-\frac{1}{a+4}+\frac{1}{a+4}-\frac{1}{a+5}\)

\(A=\frac{1}{a}-\frac{1}{a+5}=\frac{a+5-a}{a\left(a+5\right)}=\frac{5}{a^2+5a}\)

b) Điều kiện: \(a\ne0;-1;-2;-3;-4;-5\)

\(A>\frac{5}{6}\) \(\Leftrightarrow\frac{5}{a^2+5a}>\frac{5}{6}\) \(\Leftrightarrow\frac{5}{a^2+5a}-\frac{5}{6}>0\) \(\Leftrightarrow\frac{30-5a^2-25a}{30\left(a^2+5a\right)}>0\)

\(\Leftrightarrow\left[{}\begin{matrix}-6< a< -5\\0< a< 1\end{matrix}\right.\)

Kết luận: ....

NV
1 tháng 7 2020

ĐKXĐ: ...

a/ \(A=\frac{1}{a\left(a+1\right)}+\frac{1}{\left(a+1\right)\left(a+2\right)}+\frac{1}{\left(a+2\right)\left(a+3\right)}+\frac{1}{\left(a+3\right)\left(a+4\right)}+\frac{1}{\left(a+4\right)\left(a+5\right)}\)

\(=\frac{1}{a}-\frac{1}{a+1}+\frac{1}{a+1}-\frac{1}{a+2}+...+\frac{1}{a+4}-\frac{1}{a+5}\)

\(=\frac{1}{a}-\frac{1}{a+5}=\frac{5}{a\left(a+5\right)}\)

\(A>\frac{5}{6}\Rightarrow\frac{5}{a\left(a+5\right)}>\frac{5}{6}\)

\(\Leftrightarrow\frac{1}{a\left(a+5\right)}-\frac{1}{6}>0\Leftrightarrow\frac{6-a^2-5a}{a\left(a+5\right)}>0\)

\(\Leftrightarrow\frac{\left(1-a\right)\left(a+6\right)}{a\left(a+5\right)}>0\Rightarrow\left[{}\begin{matrix}-6< a< -5\\0< a< 1\end{matrix}\right.\)