tìm hai số nguyên a,b thõa mãn a2-2ab+b2-4a+7<0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$a^2-2ab-3b^2\geq 0$
$\Leftrightarrow (a^2+ab)-(3ab+3b^2)\geq 0$
$\Leftrightarrow a(a+b)-3b(a+b)\geq 0$
$\Leftrightarrow (a+b)(a-3b)\geq 0$
$\Leftrightarrow a-3b\geq 0$ (do $a+b>0$ với mọi $a,b>0$)
$\Leftrightarrow a\geq 3b$
Xét hiệu:
$P-\frac{37}{3}=\frac{4a^2+b^2}{ab}-\frac{37}{3}$
$=\frac{12a^2+3b^2-37ab}{3ab}=\frac{(a-3b)(12a-b)}{3ab}\geq 0$ do $a\geq 3b>0$
$\Rightarrow P\geq \frac{37}{3}$
Vậy $P_{\min}=\frac{37}{3}$
Ta có:
\(\dfrac{a}{b}=ab\Rightarrow a=\dfrac{a}{b^2}\Rightarrow b^2=1\Rightarrow\left[{}\begin{matrix}b=1\\b=-1\end{matrix}\right.\)
+) Nếu b=1 \(\Rightarrow ab=a+b\Rightarrow a=a+1\left(vôlí\right)\)
+) Nếu \(b=-1\Rightarrow ab=a+b\Rightarrow-a=a-1\Rightarrow a=\dfrac{1}{2}\)
\(T=a^2+b^2=\left(\dfrac{1}{2}\right)^2+\left(-1\right)^2=\dfrac{1}{4}+1=\dfrac{5}{4}\)
ab=ab⇒a=ab2⇒b2=1⇒[b=1b=−1ab=ab⇒a=ab2⇒b2=1⇒[b=1b=−1
+) Nếu b=1 ⇒ab=a+b⇒a=a+1(vôlí)⇒ab=a+b⇒a=a+1(vôlí)
+) Nếu b=−1⇒ab=a+b⇒−a=a−1⇒a=12b=−1⇒ab=a+b⇒−a=a−1⇒a=12
T=a2+b2=(12)2+(−1)2=14+1=54
Do a và b nguyên ta cộng 1 vào vế trái của BPT đã cho và được:
a2 -2ab + 2b2 - 4a + 8 < hoặc = 0
<=> 2a2 - 4ab + 4b2 - 8a + 16 < hoặc = 0
<=> ( a-2b)2 + (a-4)2 < hoặc = 0
Dấu "=" xảy ra khi :
a=4;b=2
Do a và b nguyên ta cộng 1 vào vế trái của BPT đã cho và được:
a2 -2ab + 2b2 - 4a + 8 < hoặc = 0
<=> 2a2 - 4ab + 4b2 - 8a + 16 < hoặc = 0
<=> ( a-2b)2 + (a-4)2 < hoặc = 0
Dấu "=" xảy ra khi :
a=4;b=2
Bạn cần viết đề bằng công thức toán (biểu tượng $\sum$ bên trái khung soạn thảo) để được hỗ trợ tốt hơn.