Tìm giá trị lớn nhất của biếu thức:
A= -x2+8x+2018
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\\ C_{max}=7\Leftrightarrow x=2\\ B=-\left(x^2-6x+9\right)-2=-\left(x-3\right)^2-2\le-2\\ B_{max}=-2\Leftrightarrow x=3\)
C = 4x - x2 + 3 = - x2 + 4x + 3 = -x2 + 2x2 - 4 + 7 = - (x2 -2x2 + 4) + 7
C = - (x - 2)2 +7 \(\le\) 7
Dấu "=" <=> x - 2 = 0 <=> x = 2
Vậy gtln của C = 7 khi x = 2
B = - x2 + 6x - 11 = - x2 + 2x3 - 9 - 2 = - (x2 - 2x3 + 9) - 2
B = - (x - 3)2 - 2 \(\le\) - 2
Dấu "=" <=> x - 3 = 0 <=> x = 3
Vậy gtln của B = -2 khi x = 3
a: -x^2<=0
=>-x^2+1<=1
=>A<=1
Dấu = xảy ra khi x=0
b: (x+1)^2>=0
=>-2(x+1)^2<=0
=>B<=8
Dấu = xảy ra khi x=-1
Ta có
Q = 8 – 8 x – x 2 = - x 2 – 8 x – 16 + 16 + 8 = - ( x + 4 ) 2 + 24 = 24 – ( x + 4 ) 2
Nhận thấy ( x + 4 ) 2 ≥ 0 ; Ɐx
=> 24 – ( x + 4 ) 2 ≤ 24
Dấu “=” xẩy ra khi ( x + 4 ) 2 = 0 ó x = -4
Giá trị lớn nhất của Q là 24 khi x = -4
Đáp án cần chọn là: D
a) \(A=x^2-4x+1=\left(x-2\right)^2-3\ge-3\)
\(minA=-3\Leftrightarrow x=2\)
b) \(B=-x^2-8x+5=-\left(x+4\right)^2+21\le21\)
\(maxB=21\Leftrightarrow x=-4\)
c) \(C=2x^2-8x+19=2\left(x-2\right)^2+11\ge11\)
\(minC=11\Leftrightarrow x=2\)
d) \(D=-3x^2-6x+1=-3\left(x+1\right)^2+4\le4\)
\(maxD=4\Leftrightarrow x=-1\)
\(a,=x^2-8x+16+1=\left(x-4\right)^2+1\ge1\)
Dấu \("="\Leftrightarrow x=4\)
\(b,=\left(4x^2-12x+9\right)+4=\left(2x-3\right)^2+4\ge4\)
Dấu \("="\Leftrightarrow x=\dfrac{3}{2}\)
\(c,=\left(9x^2-2\cdot3\cdot\dfrac{1}{3}x+\dfrac{1}{9}\right)+\dfrac{26}{9}=\left(3x-\dfrac{1}{3}\right)^2+\dfrac{26}{9}\ge\dfrac{26}{9}\)
Dấu \("="\Leftrightarrow3x=\dfrac{1}{3}\Leftrightarrow x=\dfrac{1}{9}\)
`A=x^2-4x+y^2-8y+6`
`A=x^2-4x+4+y^2-8y+16-14`
`A=(x-2)^2+(y-4)^2-14`
VÌ `(x-2)^2+(y-4)^2>=0`
`=>(x-2)^2+(y-4)^2-14>=-14`
`=>A>=-14`
Dấu "=" xảy ra khi `x-2=0,y-4=0<=>{(x=2),(y=4):}`
Bài 1:
a: \(A=x^2+2x+4\)
\(=x^2+2x+1+3\)
\(=\left(x+1\right)^2+3>=3\forall x\)
Dấu '=' xảy ra khi x+1=0
=>x=-1
Vậy: \(A_{min}=3\) khi x=-1
b: \(B=x^2-20x+101\)
\(=x^2-20x+100+1\)
\(=\left(x-10\right)^2+1>=1\forall x\)
Dấu '=' xảy ra khi x-10=0
=>x=10
Vậy: \(B_{min}=1\) khi x=10
c: \(C=x^2-2x+y^2+4y+8\)
\(=x^2-2x+1+y^2+4y+4+3\)
\(=\left(x-1\right)^2+\left(y+2\right)^2+3>=3\forall x\)
Dấu '=' xảy ra khi x-1=0 và y+2=0
=>x=1 và y=-2
Vậy: \(C_{min}=3\) khi (x,y)=(1;-2)
Bài 2:
a: \(A=5-8x-x^2\)
\(=-\left(x^2+8x\right)+5\)
\(=-\left(x^2+8x+16-16\right)+5\)
\(=-\left(x+4\right)^2+16+5=-\left(x+4\right)^2+21< =21\forall x\)
Dấu '=' xảy ra khi x+4=0
=>x=-4
b: \(B=x-x^2\)
\(=-\left(x^2-x\right)\)
\(=-\left(x^2-x+\dfrac{1}{4}-\dfrac{1}{4}\right)\)
\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}< =\dfrac{1}{4}\forall x\)
Dấu '=' xảy ra khi \(x-\dfrac{1}{2}=0\)
=>\(x=\dfrac{1}{2}\)
c: \(C=4x-x^2+3\)
\(=-x^2+4x-4+7\)
\(=-\left(x^2-4x+4\right)+7\)
\(=-\left(x-2\right)^2+7< =7\forall x\)
Dấu '=' xảy ra khi x-2=0
=>x=2
d: \(D=-x^2+6x-11\)
\(=-\left(x^2-6x+11\right)\)
\(=-\left(x^2-6x+9+2\right)\)
\(=-\left(x-3\right)^2-2< =-2\forall x\)
Dấu '=' xảy ra khi x-3=0
=>x=3
a, \(A=-\left(x^2+8x+16-16\right)+5=-\left(x+4\right)^2+21\le21\forall x\)
Dấu ''='' xảy ra khi x = - 4
Vậy GTLN của A là 21 tại x = -4
b, \(B=-\left(x^2-2x+1\right)-\left(4y^2+4y+1\right)+7\)
\(=-\left(x-1\right)^2-\left(2y+1\right)^2+7\le7\forall x;y\)
Dấu ''='' xảy ra khi x = 1 ; y = -1/2
Vậy GTLN của B là 7 tại x = 1 ; y = -1/2