Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
so sánh
A= 1718 + 1 phần 1719 + 1
và B = 1717 + 1 phần 1718 +1
Ta có A=17^18+1/17^19+1 < 17^18+1+16/17^19+1+16 = 17^18+17/17^19+17 = 17(17^17+1/17^18+1)= B
Vậy A<B
\(A=\frac{17^{18}+1}{17^{19}+1}\)
Ta có : \(17A=\frac{17(17^{18}+1)}{17^{19}+1}=\frac{17^{19}+17}{17^{19}+1}=\frac{17^{19}+1+16}{17^{19}+1}=1+\frac{17}{17^{19}+1}\) \((1)\)
\(B=\frac{17^{17}+1}{17^{18}+1}\)
Ta lại có : \(17B=\frac{17(17^{17}+1)}{17^{18}+1}=\frac{17^{18}+17}{17^{18}+1}=\frac{17^{18}+1+16}{17^{18}+1}=1+\frac{17}{17^{18}+1}\) \((2)\)
Từ 1 và 2 suy ra : \(1+\frac{16}{17^{19}+1}< 1+\frac{16}{17^{18}+1}\)
Nên \(17A< 17B\)
Hay \(A< B\)
Vậy : \(A< B\)
Ta có A=17^18+1/17^19+1 < 17^18+1+16/17^19+1+16 = 17^18+17/17^19+17 = 17(17^17+1/17^18+1)= B
Vậy A<B
\(A=\frac{17^{18}+1}{17^{19}+1}\)
Ta có : \(17A=\frac{17(17^{18}+1)}{17^{19}+1}=\frac{17^{19}+17}{17^{19}+1}=\frac{17^{19}+1+16}{17^{19}+1}=1+\frac{17}{17^{19}+1}\) \((1)\)
\(B=\frac{17^{17}+1}{17^{18}+1}\)
Ta lại có : \(17B=\frac{17(17^{17}+1)}{17^{18}+1}=\frac{17^{18}+17}{17^{18}+1}=\frac{17^{18}+1+16}{17^{18}+1}=1+\frac{17}{17^{18}+1}\) \((2)\)
Từ 1 và 2 suy ra : \(1+\frac{16}{17^{19}+1}< 1+\frac{16}{17^{18}+1}\)
Nên \(17A< 17B\)
Hay \(A< B\)
Vậy : \(A< B\)