K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2018

Ta có: \(\frac{5x+1}{x+1}=\frac{5x+5-4}{x+1}\)

\(=\frac{5\left(x+1\right)-4}{x+1}\)

\(=\frac{5\left(x+1\right)}{x+1}-\frac{4}{x+1}\)

\(=5-\frac{4}{x+1}\)

Vì 5 là số nguyên

=> Để 5x+1/x+1 là số nguyên thì 4/x+1 phải là số nguyên

=> 4 chia hết cho x + 1

=> x + 1 thuộc Ư(4)

=> x + 1 thuộc { 1;-1;2;-2;4;-4 }

=> x thuộc { 2;0;3;-1;5;-3 }

23 tháng 4 2018

Gọi số đó là A

\(\frac{5x+1}{x+1}=\frac{4x+x+1}{x+1}\)=\(\frac{4x+4-4+x+1}{x+1}=\frac{\left(x+1\right)+\left(x+1\right)+\left(x+1\right)+\left(x+1\right)-4+\left(x+1\right)}{x+1}\)

Vậy để A là sô nguyên thì 4 phải chia hết x+1 và x+1 thuộc ước của 4

Ư(4)={+4;+1;+2)

x+1=+1;+2;+4

Vay x=0;2;3;-1;6;-2.

 TUi ko biết số hửu tỉ nên chỉ cần ghép thêm vài sô thuộc ước của 4 và la sô hửu tỉ là được

30 tháng 8 2019

Đặt \(a-b=x;b-c=y;c-a=z\)

\(\Rightarrow x+y+z=a-b+b-c+c-a=0\)

Lúc đó: \(B=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

Mà \(x+y+z=0\Rightarrow2\left(x+y+z\right)=0\Rightarrow\frac{2\left(x+y+z\right)}{xyz}=0\)

\(\Rightarrow B=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2\left(x+y+z\right)}{xyz}\)

\(=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{yz}+\frac{2}{xz}+\frac{2}{xy}\)

\(=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\)

6 tháng 7 2019

\(x=\frac{3}{4a+1}\)
Ta có U(3)={1;3;-1;-3}
mà \(x\in\)N*
=>x={1;3}
TH1: 4a+1 =1
              4a=1-1
              4a=0
                a=0:4
                a=0
TH2: 4a+1 =3
              4a=3-1
              4a=2
                a=2:4
                a=\(\frac{2}{4}\)
                a=\(\frac{1}{2}\)

Vậy a={0;\(\frac{1}{2}\)}