K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2019

Ta có \(\frac{a.1-bc}{a.1+bc}==\frac{a^2+ac}{a^2+ab+bc+ca}=\frac{a}{a+b}\)

Từ đó \(\frac{a-bc}{a+bc}+\frac{b-ca}{b+ca}+\frac{c-ab}{c+ab}=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)

\(=-\left(\frac{a}{c-1}+\frac{b}{a-1}+\frac{c}{b-1}\right)=-\left(\frac{a^2}{ca-a}+\frac{b^2}{ab-b}+\frac{c^2}{bc-c}\right)\)

\(\le-\frac{\left(a+b+c\right)^2}{ab+bc+ca-\left(a+b+c\right)}=-\frac{1}{ab+bc+ca-1}\le-\frac{1}{\frac{\left(a+b+c\right)^2}{3}-1}=\frac{3}{2}\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c=\frac{1}{3}.\)

16 tháng 9 2017

\(https://scontent.fhph1-1.fna.fbcdn.net/v/t34.0-12/19987311_122536408488931_1351154453_n.jpg?oh=553755e5363013e1853ab6f5ed63a600&oe=59BF5CA7\)https://scontent.fhph1-1.fna.fbcdn.net/v/t34.0-12/19987311_122536408488931_1351154453_n.jpg?oh=553755e5363013e1853ab6f5ed63a600&oe=59BF5CA7
Ấn vào linh đấy ế

15 tháng 8 2019

Đề có sai ko bạn ?

15 tháng 8 2019

Ta có: \(0\le\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)(1)

theo đề bài:

\(a^2+b^2+ab+bc+ac< 0\)

=> \(2\left(a^2+b^2+ab+bc+ac\right)< 0\)

=> \(2a^2+2b^2+2ab+2bc+2ac< 0\)(2)

Từ (1); (2) =>\(2a^2+2b^2+2ab+2bc+2ac< \) \(a^2+b^2+c^2+2ab+2bc+2ac\)

=> \(a^2+b^2< c^2\)

16 tháng 4 2017

Có a2+b2+c2>=ab+bc+ca(bđt)

tương đương 1>=ab+bc+ca

Có (a+b+c)2=a2+b2+c2+2(ab+bc+ca)=1+2(ab+ca+bc)>=0

tương đương 2(ab+bc+ca)>= -1

tương đương ab+bc+ca>=\(\frac{-1}{2}\)


 

21 tháng 4 2018

Có a2+b2+c2>=ab+bc+ca(bđt)

tương đương 1>=ab+bc+ca

Có (a+b+c)2=a2+b2+c2+2(ab+bc+ca)=1+2(ab+ca+bc)>=0

tương đương 2(ab+bc+ca)>= -1

tương đương ab+bc+ca>=