Chứng minh dãy tỉ số bằng nhau: Nếu \(\frac{a}{b}=\frac{c}{d}\)thì \(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo tính chất tỉ dãy số bằng nhau thì:
\(\frac{a+b+c-d}{d}=\frac{b+c+d-a}{a}=\frac{c+d+a-b}{b}=\frac{d+a+b-c}{c}=1\)
\(\Leftrightarrow\frac{a+b}{c+d}=\frac{b+c}{d+a}=\frac{c+d}{a+b}=\frac{d+a}{b+c}=1\)
\(\Rightarrow M\Leftrightarrow1+1+1+1=4\)
Ps: Cách mình nhanh hơn nè!
mình nghĩ đề phải là P=\(\frac{a+b}{c+a}\)+\(\frac{b+c}{d+a}\)+\(\frac{c+d}{d+a}\)+\(\frac{d+a}{b+c}\)
P=\(\frac{a+b}{c+a}\)+\(\frac{b+c}{d+a}\)+\(\frac{c+d}{d+b}\)+\(\frac{d+a}{b+c}\)
=>P= \(\frac{a+b+b+c+c+d+d+a}{c+a+d+a+d+b+b+c}\)=\(\frac{2a+2b+2c}{2a+2b+2c}\)=\(\frac{2\left(a+b+c\right)}{2\left(a+b+c\right)}\)=1
\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}=\)
\(=\frac{a+b+2c+d+a+b+c+2d}{c+d}=\frac{2\left(a+b\right)}{c+d}+3=\)
Tương tự
\(=\frac{2\left(b+c\right)}{d+a}+3=\)
\(=\frac{2\left(c+d\right)}{a+b}+3=\)
\(=\frac{2\left(d+a\right)}{b+c}+3\)
\(\Rightarrow\frac{2\left(a+b\right)}{c+d}+3=\frac{2\left(b+c\right)}{d+a}+3=\frac{2\left(c+d\right)}{a+b}+3=\frac{2\left(d+a\right)}{b+c}+3\)
\(\Rightarrow\frac{2\left(a+b\right)}{c+d}=\frac{2\left(b+c\right)}{d+a}=\frac{2\left(c+d\right)}{a+b}=\frac{2\left(d+a\right)}{b+c}=\)
\(=\frac{2\left(a+b\right)+2\left(b+c\right)+2\left(c+d\right)+2\left(d+a\right)}{c+d+d+a+a+b+b+c}=\frac{4\left(a+b+c+d\right)}{2\left(a+b+c+d\right)}=2\)
\(\Rightarrow\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=1+1+1+1=4\)
<br class="Apple-interchange-newline"><div id="inner-editor"></div>2a+b+c+da =a+2b+c+db =a+b+2c+dc =a+b+c+2dd =2a+b+c+d+a+2b+c+d+a+b+2c+d+a+b+c+2ca+b+c+d =4
=>2a+b+c+d=4a
=>2a=b+c+d
Tương tự ta có:2b=a+c+d
2c=a+b+d
2d=a+b+c
=>2a+2b=b+c+d+a+c+d=>a+b+2c+2d
=>a+b=2c+2d
=>a+b/c+d=2
Tương tự ta có:b+c/d+a=2
c+d/a+b=2
d+a/b+c=2
=>M=2+2+2+2=8
Ta có: \(\frac{2012a+b+c+d}{a}-2011=\frac{a+2012b+c+d}{b}-2011=\frac{a+b+2012c+d}{c}-2011\)
\(=\frac{a+b+c+2012d}{d}-2011\)
\(\Rightarrow\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
+) Xét \(a+b+c+d=0\)
\(\Rightarrow a+b=-\left(c+d\right);b+c=-\left(a+d\right);c+d=-\left(a+b\right);a+d=-\left(b+c\right)\)
\(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)
\(=\frac{a+b}{-\left(a+b\right)}+\frac{b+c}{-\left(b+c\right)}+\frac{c+d}{-\left(c+d\right)}+\frac{d+a}{-\left(d+a\right)}\)
\(=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)
+) Xét \(a+b+c+d\) khác 0 \(\Rightarrow a=b=c=d\)
\(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=1+1+1+1=4\)
Vậy...
\(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{a+b+d}=\frac{d}{b+c+a}\)
\(\Leftrightarrow\frac{b+c+d}{a}=\frac{a+c+d}{b}=\frac{a+b+d}{c}=\frac{b+c+a}{d}\)
\(\Leftrightarrow\frac{b+c+d}{a}+1=\frac{a+c+d}{b}+1=\frac{a+b+d}{c}+1=\frac{b+c+a}{d}+1\)
\(\Leftrightarrow\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
\(\Rightarrow a=b=c=d\)
Xét \(a+b+c+d=0\) ta có :
\(a+b=-c-d;b+c=-a-d;c+d=-a-b;d+a=-b-c\)
\(\Rightarrow A=\frac{a+b}{-a-b}+\frac{b+c}{-b-c}+\frac{c+d}{-c-d}+\frac{d+a}{-b-c}=-1-1-1-1=-4\)
Xét \(a+b+c+d\ne0\) ta có : \(a=b=c=d\)
\(\Rightarrow M=\frac{a+a}{a+a}+\frac{a+a}{a+a}+\frac{a+a}{a+a}+\frac{a+a}{a+a}=1+1+1+1=4\)
Nhận xét : Nếu hai vế của mỗi đẳng thức < vế phải , vế trái của dấu '='> cùng thêm hay bớt cùng một số thì giá trị hai vế của đặng thức vẫn không thay đổi
Ta Có : \(\frac{a}{b}\)= \(\frac{c}{d}\)=> ad = bc ( theo kết quả trên )
Cộng hai vế của đẳng thức trên với ab ta được
ad + ab = bn + ab
Áp dụng tính chất phân phối của phép nhân đối vói phép công ta được :
a( d + b ) = b( a + c ) => \(\frac{a}{b}\)=\(\frac{a+c}{b+d}\) ( 1 )
Tương tự : \(\frac{a}{b}\)= \(\frac{c}{d}\)=> ad = bc
Cộng hai vế của đẳng thức trên với cd ta được :
ad + cd = bc + cd
d( a + c ) = c( b +d )
\(\frac{c}{d}\) = \(\frac{a+c}{b+d}\) ( 2 )
Từ (1) và (2) có : \(\frac{a}{b}\)= \(\frac{c}{d}\)= \(\frac{a+c}{b+d}\)
Sửa lại đề tí nhá :v
Chứng minh dãy tỉ số bằng nhau : Nếu \(\frac{a}{b}=\frac{c}{d}\)thì \(\frac{a+c}{b+d}=\frac{a-c}{b-d}\).
Giải :
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
=> \(a=b.k;c=d.k\)
=> \(a+c=b.k+d.k\)
=> \(a+c=k.\left(b+d\right)\)
=> \(\frac{a+c}{b+d}=k\)và \(\frac{a-c}{b-d}=k\left(đpcm\right)\)