K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2019

Chứng tỏ A < \(\frac{9}{2}\)

4 tháng 4 2019

giúp mình đi 

4 tháng 4 2019

Đặt A=\(\frac{7}{3}+\frac{11}{3^2}+\frac{15}{3^3}+\frac{19}{3^4}+...+\frac{2015}{3^{503}}+\frac{2019}{3^{504}}\)

3A=\(7+\frac{11}{3}+\frac{15}{3^2}+\frac{19}{3^3}+...+\frac{2015}{3^{502}}+\frac{2019}{5^{503}}\)

=> 3A-A=(\(7+\frac{11}{3}+\frac{15}{3^2}+\frac{19}{3^3}+...+\frac{2015}{3^{502}}+\frac{2019}{5^{503}}\))-(\(\frac{7}{3}+\frac{11}{3^2}+\frac{15}{3^3}+\frac{19}{3^4}+...+\frac{2015}{3^{503}}+\frac{2019}{3^{504}}\))

2A=\(7+\left(\frac{11}{3}-\frac{7}{3}\right)+\left(\frac{15}{3^2}-\frac{11}{3^2}\right)+\left(\frac{19}{3^3}-\frac{15}{3^3}\right)+...+\left(\frac{2019}{3^{503}}-\frac{2015}{3^{503}}\right)-\frac{2019}{3^{504}}\)

2A=\(7+\frac{4}{3}+\frac{4}{3^2}+\frac{4}{3^3}+...+\frac{4}{3^{503}}-\frac{2019}{3^{504}}\)

=> A=\(\frac{7}{2}+2\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{503}}\right)-\frac{2019}{2.3^{504}}\)

Em làm tiếp Xét 

B=\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{503}}\)

3B=\(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{502}}\)

=> 3B-B=\(1-\frac{1}{3^{503}}\)

=> B=\(\frac{1}{2}-\frac{1}{2.3^{503}}\)

=> A=\(\frac{7}{2}+2\left(\frac{1}{2}-\frac{1}{2.3^{503}}\right)-\frac{2019}{2.3^{504}}=\frac{9}{2}-\frac{1}{3^{503}}-\frac{2019}{2.3^{504}}< \frac{9}{2}\)

18 tháng 2 2020

Đặt: \(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{2019}{3^{2019}}\)

\(\Rightarrow3A=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{2019}{3^{2018}}\)

\(\Rightarrow2A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2018}}-\frac{2019}{3^{2019}}\)

Đặt: \(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2018}}\)

\(\Rightarrow3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2017}}\)

\(\Rightarrow2B=1-\frac{1}{3^{2018}}\)

\(\Rightarrow B=\frac{1-\frac{1}{3^{2018}}}{2}\)

Thay vào \(2A\Rightarrow2A=1+\frac{\left(1-\frac{1}{3^{2018}}\right)}{2}-\frac{2019}{3^{2019}}\)

\(=1+\frac{1}{2}-\frac{1}{2.3^{2018}}-\frac{2019}{3^{2019}}< 1+\frac{1}{2}=\frac{3}{2}\)

\(\Rightarrow A< 0,75\left(đpcm\right)\)

15 tháng 2 2020

Đặt  A=\(\frac{1}{3}+\frac{2}{3^2}+.....+\frac{2019}{3^{2019}}\)

3A=\(1+\frac{2}{3}+.....+\frac{2019}{3^{2018}}\)

3A - A = \(\left(1+\frac{2}{3}+...+\frac{2018}{3^{2017}}+\frac{2019}{3^{2018}}\right)\) -\(\left(\frac{1}{3}+....+\frac{2017}{3^{2017}}+\frac{2018}{3^{2018}}+\frac{2019}{3^{2019}}\right)\)

2A = \(1+\frac{1}{3}+...+\frac{1}{3^{2018}}-\frac{2019}{3^{2019}}\)

Đặt B=\(1+\frac{1}{3}+....+\frac{1}{3^{2018}}\)

3B =\(3+1+....+\frac{1}{3^{2017}}\)

3B - B=\(\left(3+1+....+\frac{1}{3^{2017}}\right)\)-\(\left(1+\frac{1}{3}+...+\frac{1}{3^{2018}}\right)\)

2B =\(3-\frac{1}{3^{2018}}\)

Ta có:2A= B - \(\frac{2019}{3^{2019}}\)

4A = 2B -\(\frac{2.2019}{3^{2019}}\)

4A=\(\left(3-\frac{1}{3^{2018}}\right)\)-\(\frac{2.2019}{3^{2019}}\)

A=\(\frac{3}{4}-\frac{1}{3^{2018}.4}-\frac{2019}{3^{2019}.2}\)<\(\frac{3}{4}\)=0,75  

Suy ra :\(\frac{1}{3}+\frac{2}{3^2}+...+\frac{2019}{3^{2019}}\)< 0,75 (đpcm)

25 tháng 9 2020

a/

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)

\(A=2A-A=1-\frac{1}{2^{100}}< 1\)

b/

\(3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2018}}\)

\(2B=3B-B=1-\frac{1}{3^{2019}}\Rightarrow B=\frac{1}{2}-\frac{1}{2.3^{2019}}< \frac{1}{2}\)

22 tháng 10 2019

_Giúp mình với_

22 tháng 10 2019

ta có:

        2/3^2+2/5^2+...+2/2019^2 < 2/(3.5)+2/(5.7)+...+2/(2019.2021)

=>                             A                < 1/3-1/5+...+1/2019-1/2021

=>                             A                < 1/3-1/2021

=>                             A                <2018/6063

=>                              A                <2520/6063 - 520/6063  (1)

Vì 2520/6063<504/1009=>2520/6063 - 502/6063 <504/1009 (2)

Từ (1) và (2) => A< 504/1009

\(A=2\cdot\left(\frac{1}{3^2}+\frac{1}{5^2}+...+\frac{1}{2017^2}\right)< 2\cdot\left(\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+...+\frac{1}{2015\cdot2016}\right)\)

Đặt \(M=\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+...+\frac{1}{2015\cdot2016}=\left(1+\frac{1}{3}+...+\frac{1}{2015}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2016}\right)\)

\(\Rightarrow M=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1008}\right)\)

\(\Rightarrow M=\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}< \frac{1}{1009}+\frac{1}{1009}+...+\frac{1}{1009}\)(1008 số hạng )

hay\(M< \frac{1008}{1009}\Rightarrow A< 2\cdot\frac{1008}{1009}=\frac{504}{1009}\left(ĐPCM\right)\)