K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2019

dễ ợt,bài này mà lớp 8,lớp 6 còn làm dc

\(\frac{x+y}{\left(x+y\right)^2}=\frac{5}{19}\)

=>\(\frac{1}{x+y}=\frac{5}{19}\)

=>5(x+y)=19*1

=>x+y=\(\frac{19}{5}\)

do x,y nguyên nên x+y nguyên

mà 19/5 không phải là số nguyên

=>vô lí

=>x,y thuộc rỗng

15 tháng 4 2019

khó lắm, mình không giải được, thông cảm nha bạn, mình chỉ mún nói 1 câu gồm 3 chữ thôi, đó là CHÚC NGỦ NGON

8 tháng 7 2017

Bài I: Từ \(\frac{x}{2}\)=\(\frac{y}{3}\)\(\Rightarrow\)\(\frac{x}{2}\).\(\frac{1}{4}\)=\(\frac{y}{3}\).\(\frac{1}{4}\)\(\Rightarrow\)\(\frac{x}{8}\)=\(\frac{y}{12}\)(1)

Từ \(\frac{y}{4}\)=\(\frac{z}{5}\)\(\Rightarrow\)\(\frac{y}{4}\).\(\frac{1}{3}\)=\(\frac{z}{5}\).\(\frac{1}{3}\)\(\Rightarrow\)\(\frac{y}{12}\)=\(\frac{z}{15}\)(2)

Từ (1) và (2) suy ra \(\frac{x}{8}\)=\(\frac{y}{12}\)=\(\frac{z}{15}\)

Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:

    \(\frac{x}{8}\)=\(\frac{y}{12}\)=\(\frac{z}{15}\)=\(\frac{x+y-z}{8+12-15}\)=\(\frac{10}{5}\)=2

Do đó:\(x=2.8=16\)

          \(y=12.2=24\)

          \(z=15.2=30\)

   Vậy \(x=16\);\(y=24\);\(z=30\)

Bài II: Đặt \(k=\frac{x}{2}\)=\(\frac{y}{5}\)

         \(\Rightarrow\)\(x=2.k\);\(y=5.k\)

\(x.y=10\)nên \(2k.5k=10\)

                         \(\Rightarrow\)\(10.k^2=10\)

                         \(\Rightarrow\)\(k^2=1\)

                        \(\Rightarrow\)\(k=1\)hoặc\(k=-1\)

 +) Với \(k=1\)thì \(x=2\);\(y=5\)

 +) Với \(k=-1\)thì \(x=-2\);\(y=-5\)

           Vậy \(x=2\);\(y=5\)hoặc \(x=-2\);\(y=-5\)

8 tháng 7 2017

\(\frac{x}{2}=\frac{y}{5}\)và  \(xy=10\)

Ta có : 

\(\frac{x}{2}=\frac{y}{5}\Leftrightarrow5x=2y\Leftrightarrow x=\frac{2y}{5}\). Thay vào biểu thức x . y = 10 . Ta được : 

\(\frac{2y}{5}.y=10\Leftrightarrow\frac{2y^2}{5}=10\Leftrightarrow2y^2=50\Leftrightarrow y^2=25\Leftrightarrow y=5;y=-5\)

Với  \(y=5\Rightarrow x=\frac{2.5}{5}=2\)

Với \(y=-5\Rightarrow x=\frac{2.\left(-5\right)}{5}=-2\)

29 tháng 8 2021

\(x^2+x+13=y^2\\ \Leftrightarrow x^2-y^2+x+13=0\\ \Leftrightarrow4x^2-4y^2+4x+52=0\\ \Leftrightarrow\left(2x+1\right)^2-4y^2=51\\ \Leftrightarrow\left(2x+1-2y\right)\left(2x+1+2y\right)=51=51\cdot1=17\cdot3\left(x,y>0\right)\)

Tới đây giải ra các trường hợp thui

 

9 tháng 9 2018

    \(\frac{x}{y^3-1}-\frac{y}{x^3-1}\)

\(=\frac{1-y}{\left(y-1\right)\left(y^2+y+1\right)}-\frac{1-x}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\frac{-1}{y^2+y+1}+\frac{1}{x^2+x+1}\)

\(=\frac{-x^2-x-1+y^2+y+1}{\left(x^2+x+1\right)\left(y^2+y+1\right)}\)

\(=\frac{\left(y^2-x^2\right)+y-x}{x^2y^2+x^2y+x^2+xy^2+xy+x+y^2+y+1}\)

\(=\frac{\left(y-x\right)\left(y+x\right)+y-x}{x^2y^2+x^2y+xy^2+x^2+xy+y^2+x+y+1}\)

\(=\frac{y-x+y-x}{x^2y^2+xy\left(x+y\right)+x\left(x+y\right)+y^2+x+y+1}\)

\(=\frac{2\left(y-x\right)}{x^2y^2+xy+x+y^2+x+y+1}\)

\(=\frac{2\left(y-x\right)}{x^2y^2+x\left(y+1\right)+y^2+x+y+1}\)

\(=\frac{2\left(y-x\right)}{x^2y^2+\left(1-y\right)\left(y+1\right)+y^2+\left(x+y\right)+1}\)

\(=\frac{2\left(y-x\right)}{x^2y^2+1-y^2+y^2+1+1}\)

\(=\frac{2\left(y-x\right)}{x^2y^2+3}\)

19 tháng 3 2020

Ta có: xy - 2x + y = 3

          x(y-2)+(y-2)=3-2

          (x+1)(y-2)=1=1.1=-1.-1

ta có bảng sau

x+1|  1 |-1

y-2 | 1  | -1 

 x   |   0  |  2

 y |     3 |   1

 Chúc chị học tốt

16 tháng 11 2015

a)x=+-4,+-7;+-2,+-14
b)(2x)^2-1=-21=>(2x)^2=-20=>2x=\(\sqrt{-20}\)=>x sẽ ko có giá trị vì ko có căn âm
c)2xy+x-6y-3-7=0
=2xy+x-6y-10=x+2(xy-3y-5)=0=>xy-3y-5=0

12 tháng 2 2016

Câu e: x+xy +y =9;x[y+1]+y=9      ;x[y+1]+[y+1]=10     

[x+1]+[y+1]=10 nên [x+1] và [y+1] thuộc ƯC của 10 sau đó kẻ bảng ra 

\(\frac{x^2}{y+1}+\frac{y+1}{4}\ge x;\frac{y^2}{z+1}+\frac{z+1}{4}\ge y;\frac{z^2}{x+1}+\frac{x+1}{4}\ge z\)

\(\Rightarrow VT\ge\frac{3}{4}\left(x+y+z\right)-\frac{3}{4}\ge\frac{3}{4}.2=\frac{3}{2}\)

6 tháng 1 2017

478787

6 tháng 1 2017

478787 nhé bạn

15 tháng 12 2020

Xét bất đẳng thức phụ: \(\frac{x}{x+1}\le\frac{9}{16}x+\frac{1}{16}\)(*)

(*)\(\Leftrightarrow\frac{-\left(3x-1\right)^2}{16\left(x+1\right)}\le0\)*đúng với mọi x > 0*

Áp dụng tương tự rồi cộng vế theo vế, ta được: \(A\le\frac{9}{16}\left(x+y+z\right)+\frac{3}{16}=\frac{3}{4}\)

Đẳng thức xảy ra khi \(x=y=z=\frac{1}{3}\)