\(\frac{1}{2^2}\)+\(\frac{1}{3^2}\)+ ...+\(\frac{1}{2019^2}\)tính nhanh
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+100}\)
\(A=\frac{1}{3}+\frac{1}{6}+...+\frac{1}{5050}\)
\(A=2\left(\frac{1}{6}+\frac{1}{12}+...+\frac{1}{10100}\right)\)
\(A=2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{100.101}\right)=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\right)\)
\(A=2.\left(\frac{1}{2}-\frac{1}{101}\right)\)
Tự tính
\(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{5050}\)
\(=2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{10100}\right)\)
\(=2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{100.101}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{100}-\frac{1}{101}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{101}\right)\)
\(=2.\frac{99}{202}\)
\(=\frac{99}{101}\)
1) Ta có: \(2020^2=\left(2019+1\right)^2=2019^2+2.2019+1.\)
\(\Rightarrow1+2019^2=2020^2-2.2019\)
\(\Rightarrow M=\sqrt{1+2019^2+\frac{2019^2}{2020^2}}+\frac{2019}{2020}=\sqrt{2020^2-2.2019+\frac{2019^2}{2020^2}}+\frac{2019}{2020}\)
\(=\sqrt{2020^2-2.2020.\frac{2019}{2020}+\left(\frac{2019}{2020}\right)^2}+\frac{2019}{2020}\)
\(=\sqrt{\left(2020-\frac{2019}{2020}\right)^2}+\frac{2019}{2020}=2020-\frac{2019}{2020}+\frac{2019}{2020}\)
\(=2020\)
Vậy M=2020.
2) Xét : \(k\in N;k\ge2\)ta có:
\(\left(1+\frac{1}{k-1}-\frac{1}{k}\right)^2=1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}+\frac{2}{k-1}-\frac{2}{\left(k-1\right)k}-\frac{2}{k}\)
\(=1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}+\frac{2}{k-1}-\frac{2}{k-1}+\frac{2}{k}-\frac{2}{k}\)
\(\Rightarrow\left(1+\frac{1}{k-1}-\frac{1}{k}\right)^2=1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}\)
\(\Rightarrow\sqrt{1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}}=1+\frac{1}{k-1}+\frac{1}{k}\)
Cho \(k=3,4,...,2020.\)Ta có:
\(N=\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{1+\frac{1}{3^2}+\frac{1}{4^2}}+...+\sqrt{1+\frac{1}{2019^2}+\frac{1}{2020^2}}\)
\(=\left(1+\frac{1}{2}-\frac{1}{3}\right)+\left(1+\frac{1}{3}-\frac{1}{4}\right)+...+\left(1+\frac{1}{2018}-\frac{1}{2019}\right)+\left(1+\frac{1}{2019}-\frac{1}{2020}\right)\)
\(=2018+\frac{1}{2}-\frac{1}{2020}=2018\frac{1009}{2020}\)
Vậy \(N=2018\frac{1009}{2020}.\)
Ta có : \(A=3+\frac{3}{1+2}+\frac{3}{1+2+3}+...+\frac{3}{1+2+...+100}\)
\(A=3\left(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+...+100}\right)\)
Mà \(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+...+100}=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{100.101}\)
\(=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\right)=2\left(1-\frac{1}{101}\right)=\frac{200}{101}\)
\(\Rightarrow A=3.\frac{200}{101}=\frac{600}{101}\)
B=11.2+13.4+15.6+....+12019.2020
⇒2B=21.2+23.4+25.6+....+22019.2020
<1+12.3+13.4+14.5+15.6+....+12018.2019+12019.2020
2B<1+3−22.3+4−33.4+5−44.5+....+2019−20182018.2019+2020−20192019.2020
2B<1+12−13+13−14+...+12019−12020
2B<1+12−12020<1+12
B<34
---------------------
Đặt 22018=a;32019=b;52020=c(a,b,c>0)
A=aa+b+bb+c+cc+a>aa+b+c+ba+b+c+ca+b+c=1
⇒A>1>34>B
Sửa đề \(\frac{2019}{1}+\frac{2018}{2}+...+\frac{1}{2019}\)
Ta có: \(\frac{2019}{1}+\frac{2018}{2}+...+\frac{1}{2019}\)
\(=\left(2019+1\right)+\left(\frac{2018}{2}+1\right)+...+\left(\frac{1}{2019}+1\right)-2019\)
\(=2020+\frac{2020}{2}+...+\frac{2020}{2019}+\frac{2020}{2020}-2020\)
\(=\frac{2020}{2}+...+\frac{2020}{2019}+\frac{2020}{2020}\)
\(=2020.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2020}\right)\)Thay vào biểu thức A ta được:
\(A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2020}}{2020.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2020}\right)}=\frac{1}{2020}\)
Đặt \(A=\frac{\frac{1}{2020}+\frac{2}{2019}+\frac{3}{2018}+...+\frac{2019}{2}+\frac{2020}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2021}}\)
\(A=\frac{1+\left(\frac{1}{2020}+1\right)+\left(\frac{2}{2019}+1\right)+\left(\frac{3}{2018}+1\right)+...+\left(\frac{2019}{2}+1\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2021}}\)
\(A=\frac{\frac{2021}{2021}+\frac{2021}{2020}+\frac{2021}{2019}+...+\frac{2021}{2}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2021}}\)
\(A=\frac{2021\left(\frac{1}{2021}+\frac{1}{2020}+\frac{1}{2019}+...+\frac{1}{2}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2021}}=2021\)
\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2019^2}\)\(=\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{2019.2019}\)
\(=\frac{1}{2}-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}+...+\frac{1}{2019}-\frac{1}{2019}\)
\(=0\)