K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 4 2019

a/ Bạn tự giải

b/ \(\Delta'=4-m-2=2-m\ge0\Rightarrow m\le2\)

Khi đó, phương trình có 2 nghiệm thỏa mãn: \(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=m+2\end{matrix}\right.\)

Kết hợp điều kiện đề bài ta có hệ:

\(\left\{{}\begin{matrix}x_1-x_2=6\\x_1+x_2=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=5\\x_2=-1\end{matrix}\right.\)

\(x_1x_2=m+2\Rightarrow m+2=5.\left(-1\right)=-5\Rightarrow m=-7\)

23 tháng 2 2022

a, Thay m=3 vào pt ta có:

\(\left(1\right)\Leftrightarrow x^2-6x+4=0\\ \Leftrightarrow x=3\pm\sqrt{5}\)

b, Để pt có 2 nghiệm thì \(\Delta'\ge0\)

\(\Leftrightarrow\left(-m\right)^2-1.4\ge0\\ \Leftrightarrow m^2-4\ge0\\ \Leftrightarrow\left[{}\begin{matrix}m\ge2\\m\le-2\end{matrix}\right.\)

Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=4\end{matrix}\right.\)

\(\left(x_1+1\right)^2+\left(x_2+1\right)^2=2\\ \Leftrightarrow x^2_1+2x_1+1+x^2_2+2x_2+1=2\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left(x_1+x_2\right)=0\\ \Leftrightarrow\left(2m\right)^2-2.4+2.2m=0\\ \Leftrightarrow4m^2+4m-8=0\\ \Leftrightarrow\left[{}\begin{matrix}m=1\left(ktm\right)\\m=-2\left(tm\right)\end{matrix}\right.\)

 

23 tháng 3 2022

a)thay m=1 vào pt ta có 

\(x^2+4x=0\)

<=> \(\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)

b) thay x=2 vào pt ta có: 13+m=0

<=>m=-13

thay m=-13 vào pt ta có

\(x^2+4x-12=0\)

<=>(x-2)(x+6)=0

<=>\(\left[{}\begin{matrix}x=2\\x=-6\end{matrix}\right.\)\(\)

vậy với m=-13 thì nghiệm còn lại là x=-6

c) để pt có 2 nghiệm pb thì \(\Delta>0\)

<=>16-4m-4>0

<=>3-m>0

<=>m<3

áp dụng định lí Vi-ét ta có\(\left\{{}\begin{matrix}x_1+x_2=-4\\x_1x_2=m+1\end{matrix}\right.\)

theo đề bài ta có \(x_1^2+x_2^2=10\)

<=>\(\left(x_1+x_2\right)^2-2x_1x_2=10\)

<=>16-2m-2=10

<=>2-m=0

<=>m=2(nhận)

vậy với m=2 thì pt có 2 nghiệm pb thỏa yêu cầu đề bài.

 

 

23 tháng 2 2022

a, Thay m=0 vào pt ta có:

\(x^2-x+1=0\)

\(\Rightarrow\) pt vô nghiệm 

b, Để pt có 2 nghiệm thì \(\Delta\ge0\)

\(\Leftrightarrow\left(-1\right)^2-4.1\left(m+1\right)\ge0\\ \Leftrightarrow1-4m-4\ge0\\ \Leftrightarrow-3-4m\ge0\\ \Leftrightarrow4m+3\le0\\ \Leftrightarrow m\le-\dfrac{3}{4}\)

Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=1\\x_1x_2=m+1\end{matrix}\right.\)

\(x_1x_2\left(x_1x_2-2\right)=3\left(x_1+x_2\right)\\ \Leftrightarrow\left(x_1x_2\right)^2-2x_1x_2=3.1\\ \Leftrightarrow\left(m+1\right)^2-2\left(m+1\right)-3=0\\ \Leftrightarrow\left[{}\begin{matrix}m+1=3\\m+1=-1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}m=2\left(ktm\right)\\m=-2\left(tm\right)\end{matrix}\right.\)

3 tháng 5 2023

a, Thay \(m=1\) vào \(\left(1\right)\)

\(\Rightarrow x^2-7x+1=0\\ \Delta=\left(-7\right)^2-4.1.1=45\\ \Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{7+3\sqrt{5}}{2}\\x_2=\dfrac{7-3\sqrt{5}}{2}\end{matrix}\right.\)

b,  \(\Delta=\left(-7\right)^2-4.m=49-4m\)

phương trình cs nghiệm \(49-4m\ge0\\ \Rightarrow m\le\dfrac{49}{4}\)

Áp dụng hệ thức vi ét 

\(\left\{{}\begin{matrix}x_1+x_2=7\\x_1x_2=m\end{matrix}\right.\)

\(x^2_1+x^2_2=29\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=29\\ \Leftrightarrow7^2-2.m-29=0\\ \Leftrightarrow20-2m=0\\ \Rightarrow m=10\left(t/m\right)\)

Vậy \(m=10\)

 

5 tháng 5 2022

undefinedundefined

23 tháng 10 2019

a. + Với  m = − 1 2   phương trình (1) trở thành x 2 − 4 x = 0 ⇔ x = 0 x = 4 .

+ Vậy khi  m = − 1 2  phương trình có hai nghiệm x= 0 và x= 4.

b. + Phương trình có hai nghiệm dương phân biệt khi 

                            Δ = 2 m + 5 2 − 4 2 m + 1 > 0 x 1 + x 2 = 2 m + 5 > 0 x 1 . x 2 = 2 m + 1 > 0

+ Ta có  Δ = 2 m + 5 2 − 4 2 m + 1 = 4 m 2 + 12 m + 21 = 2 m + 3 2 + 12 > 0 , ∀ m ∈ R

+ Giải được điều kiện  m > − 1 2  (*).

+ Do P>0 nên P đạt nhỏ nhất khi P 2  nhỏ nhất.

+ Ta có P 2 = x 1 + x 2 − 2 x 1 x 2 = 2 m + 5 − 2 2 m + 1 = 2 m + 1 − 1 2 + 3 ≥ 3     ( ∀ m > − 1 2 ) ⇒ P ≥ 3    ( ∀ m > − 1 2 ) .

và P = 3  khi m= 0 (thoả mãn (*)).

+ Vậy giá trị nhỏ nhất  P = 3  khi m= 0.

NV
21 tháng 3 2022

a. Với \(m=-5\) pt trở thành:

\(x^2+8x-9=0\)

\(a+b+c=1+8-9=0\) nên pt có 2 nghiệm: \(\left\{{}\begin{matrix}x_1=1\\x_2=-9\end{matrix}\right.\)

b. Ta có:

\(\Delta'=\left(m+1\right)^2-\left(m-4\right)=m^2+m+5=\left(m+\dfrac{1}{2}\right)^2+\dfrac{19}{4}>0;\forall m\)

\(\Rightarrow\) Pt đã cho luôn có 2 nghiệm pb với mọi m

a: Khi m=5 thì (1) sẽ là: x^2+5x+4=0

=>x=-1; x=-4

b: Sửa đề: Q=x1^2+x2^2-4x1-4x2

Q=(x1+x2)^2-2x1x2-4(x1+x2)

=m^2-2(m-1)-4(-m)

=m^2-2m+2+4m

=m^2+2m+2=(m+1)^2+1>=1

Dấu = xảy ra khi m=-1

10 tháng 8 2018

a) Với m = 1 phương trình trở thành:

x 2  + 4x + 4 = 0 ⇔ (x + 2 ) 2  = 0 ⇔ x = -2

Vậy x = -2

b) Ta có: Δ' = m 2  - 5m + 4

Phương trình có hai nghiệm phân biệt

⇔ Δ' > 0 ⇔ m 2  - 5m + 4 > 0 Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 2)

Do x1 < x2 < 1

Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 2)