K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2019

A=\(\frac{x}{xy+x+1}\)+\(\frac{xy}{xyz+xy+x}\)+\(\frac{xyz}{x^2yz+xyz+xy}\)

A=\(\frac{x}{xy+x+1}\)+\(\frac{xy}{1+xy+x}\)+\(\frac{1}{x+1+xy}\)

A=1

11 tháng 9 2021

Ta có \(\frac{x+2xy+1}{x+xy+xz+1}=\frac{x+2xy+xyz}{x+xy+xz+xyz}=\frac{1+2y+yz}{\left(y+1\right)\left(z+1\right)}\)

Tương tự => \(M=\frac{1+2y+yz}{\left(y+1\right)\left(z+1\right)}+\frac{1+2z+zx}{\left(1+x\right)\left(z+1\right)}+\frac{1+2x+xy}{\left(1+x\right)\left(y+1\right)}\)

=> \(M=\frac{\left(1+2y+yz\right)\left(1+x\right)+\left(1+2z+zx\right)\left(1+y\right)+\left(1+2x+xy\right)\left(1+z\right)}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\)

=>\(M=\frac{6+3\left(x+y+z\right)+3\left(xy+yz+xz\right)}{2+\left(x+y+z\right)+\left(xy+yz+xz\right)}=3\)

2 tháng 1 2016

ta có x/xy+x+1 +y/yz+y+1 +z/xz+z+1

=xz/xyz+xz+z +xyz/xyz^2+xyz+xz +z/xz+z+1

=xz/1+xz+z +1/z+1+xz +z/ xz+z+1

=xz+z+1 /xz+z+1 =1

12 tháng 1 2018

\(A=\frac{x}{xy+x+1}+\frac{y}{y+1+yz}+\frac{z}{1+z+xz}\)

\(=\frac{x}{xy+x+1}+\frac{xy}{xy+x+xyz}+\frac{xyz}{xy+xyz+x^2yz}\)

\(=\frac{x}{xy+x+1}+\frac{xy}{xy+x+1}+\frac{1}{xy+1+x}\)

\(=\frac{xy+x+1}{xy+x+1}=1\)

12 tháng 1 2018

\(\frac{x}{xy+x+1}+\frac{xy}{yx+x+xyz}+\frac{xyz}{xy+xyz+x^2yz}\)

\(\frac{x}{xy+x+1}+\frac{xy}{yx+x+1}+\frac{1}{xy+1+x}\)

\(\frac{x+xy+1}{xy+x+1}=1\)

1 tháng 9 2021

Hello hikaru nakamura

9 tháng 9 2021

k ai trả lời đc ah

19 tháng 10 2017

Xem lại cái đề đi Tuyển. Hình như giá trị nhỏ nhất của cái biểu thức dưới còn lớn hơn là 1 thì làm sao bài đó có giá trị x, y, z thỏa được mà bảo tính A.

20 tháng 2 2018

đáp án

Không có văn bản thay thế tự động nào.

8 tháng 1 2021

chia cả 2 vế của giả thiết cho xyz rồi đặt 1/x ; 1/y ; 1/z => a ; b ; c

đến đây thì tự làm tiếp đi 

3 tháng 3 2017

Bạn thay y xyz=2010 vào A ta được

A= xyz*x/xy+xyz*x+xyz + y/yz+y+xyz + z/xz+z+1

suy ra A=x^2yz/xy(1+xz+z) + y/y(z+1+xz) + z/xz+x+1

 A= xz/1+xz+z + 1/z+1+xz + x/xz+z+1 = xz+1+x/xz+1+x =1

Vay A=1

7 tháng 3 2019

TA CÓ \(\frac{x}{xy+x+1}\)+\(\frac{y}{yz+y+1}\)+\(\frac{z}{xz+z+1}\)

         =\(\frac{x}{xy+x+1}\)+\(\frac{xy}{xyz+xy+x}\)+\(\frac{xyz}{x^2yz+xyz+xy}\)

         =\(\frac{x}{xy+x+1}\)+\(\frac{xy}{xy+x+1}\)+\(\frac{1}{xy+x+1}\)(vì xyz=1)

        =\(\frac{x+xy+1}{xy+x+1}\)

        = 1

26 tháng 7 2016

\(P=\frac{1}{1+x+xy}+\frac{1}{1+y+yz}+\frac{1}{1+z+xz}.\)

\(P=\frac{1}{1+x+xy}+\frac{x}{x\left(1+y+yz\right)}+\frac{xy}{xy\left(1+z+xz\right)}\)

\(P=\frac{1}{1+x+xy}+\frac{x}{x+xy+xyz}+\frac{xy}{xy+xyz+x^2yz}\)

\(P=\frac{1}{1+x+xy}+\frac{x}{x+xy+xyz}+\frac{xy}{xy+xyz+xyz.x}\)

\(P=\frac{1}{1+x+xy}+\frac{x}{x+xy+1}+\frac{xy}{xy+1+x}\left(xyz=1\right)\)

\(P=\frac{1+x+xy}{1+x+xy}=1\)

Vậy P=1