K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2019

Cách thứ nhất: Bấm máy tính rồi xét x với số đó. Sau đó tìm ra được 2 nghiệm thì nói do số có số mũ lớn nhất là x2nên chỉ có nhiều nhất là 2 nghiệm,,,, Xong *cách này cần máy tính ...... Nếu cần có thể nói tớ sẽ nói cách cho và cách này rất dễ *

Cách thứ 2:

x2−2x−3=x2+x−3x−3=x.(x+1)−3(x+1)=(x+1)(x−3)

Xét đa thức đó bằng 0 => (x+1)(x-3)=0

=> x=-1 hoặc x=3

Vậy -1 và 3 là các nghiệm của đa thức trên.

20 tháng 7 2023

a) Sữa đề: \(x^2+2x-3=0\)

\(\Rightarrow x^2-x+3x-3=0\)

\(\Rightarrow x\left(x-1\right)+3\left(x-1\right)=0\)

\(\Rightarrow\left(x-1\right)\left(x+3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x+3=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)

b) \(x^2-3x=0\)

\(\Rightarrow x\left(x-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x-3=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

c) \(2x-8x^3=0\)

\(\Rightarrow2x\left(1-4x^2\right)=0\)

\(\Rightarrow2x\left(1-2x\right)\left(1+2x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}2x=0\\1-2x=0\\1+2x=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)

d) \(\dfrac{2}{3}-6x^2=0\)

\(\Rightarrow\dfrac{2}{3}\left(1-9x^2\right)=0\)

\(\Rightarrow\dfrac{2}{3}\left(1-3x\right)\left(1+3x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}1-3x=0\\1+3x=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=-\dfrac{1}{3}\end{matrix}\right.\)

20 tháng 7 2023

a) Để tìm nghiệm của đa thức x^2 + 2x + 3, ta giải phương trình x^2 + 2x + 3 = 0. Áp dụng công thức nghiệm của phương trình bậc hai, ta có: x = (-2 ± √(2^2 - 4*1*3))/(2*1) x = (-2 ± √(4 - 12))/2 x = (-2 ± √(-8))/2 x = (-2 ± 2√2i)/2 x = -1 ± √2i Vậy đa thức x^2 + 2x + 3 không có nghiệm thực. b) Để tìm nghiệm của đa thức x^2 - 3x, ta giải phương trình x^2 - 3x = 0. Áp dụng công thức nghiệm của phương trình bậc hai, ta có: x = (3 ± √(3^2 - 4*1*0))/(2*1) x = (3 ± √(9))/2 x = (3 ± 3)/2 Vậy đa thức x^2 - 3x có hai nghiệm: x = 0 và x = 3. c) Để tìm nghiệm của đa thức 2x - 8x^3, ta giải phương trình 2x - 8x^3 = 0. Ta có thể rút gọn phương trình bằng cách chia cả hai vế cho 2, ta được: x - 4x^3 = 0 Vậy đa thức 2x - 8x^3 có một nghiệm duy nhất: x = 0. d) Để tìm nghiệm của đa thức 2/3 - 6x^2, ta giải phương trình 2/3 - 6x^2 = 0. Ta có thể đưa phương trình về dạng 6x^2 = 2/3 bằng cách nhân cả hai vế cho 3, ta được: 6x^2 = 2/3 Tiếp theo, ta chia cả hai vế cho 6, ta được: x^2 = 1/9 Áp dụng căn bậc hai cho cả hai vế, ta có: x = ± √(1/9) x = ± 1/3 Vậy đa thức 2/3 - 6x^2 có hai nghiệm: x = 1/3 và x = -1/3.

8 tháng 5 2022

+) \(2x-6=0\)

\(\Rightarrow x=3\)

+) \(2x^2-8x=0\)

\(2x\left(x-4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

1) Đặt \(A\left(x\right)=2x-6\)

    Cho \(A\left(x\right)=0\)

  hay \(2x-6=0\)

         \(2x\)       \(=0+6\)

         \(2x\)       \(=6\)

           \(x\)       \(=6:2\)

           \(x\)        \(=3\)

Vậy \(x=3\) là nghiệm của đa thức A (\(x\))

 

2) Đặt \(B\left(x\right)=2x^2-8x\)

    Cho \(B\left(x\right)=0\)

hay \(2x^2-8x=0\)

      \(2.x.x-8.x=0\)

        \(x.\left(2x-8\right)=0\)

⇒ \(x=0\) hoặc \(2x-8=0\)

⇒ \(x=0\) hoặc \(2x\)        \(=0+8\)

⇒ \(x=0\) hoặc \(2x\)        \(=8\)

⇒ \(x=0\) hoặc   \(x\)        \(=8:2=4\)

Vậy \(x=0\) hoặc \(x=4\) là nghiệm của đa thức B (\(x\))

\(2x^3-8x^2+9x=0\)

\(\Leftrightarrow x\left(2x^2-8x+9\right)=0\)

TH1 : x = 0 

TH2 : \(2x^2-8x+9=0\)

Ta có : \(\left(-8\right)^2-4.9.2=64-72< 0\)

Nên pt vô nghiệm 

Vậy nghiệm đa thức là x = 0

17 tháng 6 2020

\(2x^3-8x^2+9x=0\)

\(< =>x\left(2x^2-8x+9\right)=0\)

\(< =>\orbr{\begin{cases}x=0\\2x^2-8x+9=0\left(1\right)\end{cases}}\)

\(\left(1\right)\)ta có : \(\Delta=\left(-8\right)^2-4.2.9=64-72=-8\)

do delta < 0 nên phương trình vô nghiệm 

Vậy đa thức chỉ nhận 0 là nghiệm

2 tháng 5 2022

Cho H(x)= 0

2x3-8x = 0

x.(2x2-8) = 0

TH1)

x =0 

TH2)

2x2-8 = 0

2x2 = 8

x2 =4

x=2

Vậy nghiệm của đa thức \(H\left(x\right)=\left\{0,2\right\}\)

 

2 tháng 5 2022

th2 hai là

\(\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

nha lê

30 tháng 4 2021

 2x4−8x2=0

2x2(x2-4)=0

=>2x2=0 hoặc  (x2-4)=0

=>x=0 hoặc      x2=4

                         x=2 hoặc x=-2

25 tháng 4 2021

a) \(-3x^3+5x^2-2x=0\\ \Leftrightarrow3x^3-5x^2+2x=0\\ \Leftrightarrow x\left(3x^2-5x+2\right)=0\\ \Leftrightarrow x\left(3x-2\right)\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\\x=1\end{matrix}\right.\)

Vậy tập nghiệm của phương trình là \(S=\left\{0;\dfrac{2}{3};1\right\}\)

b) \(\dfrac{-1}{2}x^4+\dfrac{1}{8}x^2=0\\ \Leftrightarrow\dfrac{-1}{2}x^2\left(x^2-\dfrac{1}{4}\right)=0\\ \Leftrightarrow\dfrac{-1}{2}x^2\left(x-\dfrac{1}{2}\right)\left(x+\dfrac{1}{2}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)

Vậy tập nghiệm của phương trình là \(S=\left\{0;\dfrac{1}{2};\dfrac{-1}{2}\right\}\)

20 tháng 4 2018

x^2(2x+1)-4(2x+1)

=(x^2-4)(2x+1)

R bn cho 2 cái đấy =0 từ đó tính đc mỗi cái

X có 2 gtri nha

Tự lm nốt

20 tháng 4 2018

Ta có :

\(2x^3+x^2-8x-4=0\)

\(\Leftrightarrow\left(2x^3+4x^2\right)-\left(3x^2+6x\right)-\left(2x+4\right)=0\)

\(\Leftrightarrow2x^2\left(x+2\right)-3x\left(x+2\right)-2\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(2x^2-3x-2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left[\left(2x^2+x\right)-\left(4x+2\right)\right]=0\)

\(\Leftrightarrow\left(x+2\right)\left[x\left(2x+1\right)-2\left(2x+1\right)\right]=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-2\right)\left(2x+1\right)=0\)

Ta có các trường hợp :

\(x+2=0\Leftrightarrow x=-2\)

\(x-2=0\Leftrightarrow x=2\)

\(2x+1=0\Leftrightarrow x=-\frac{1}{2}\)

Vậy .....

29 tháng 3 2019

\(2x^3-8x^2+9x=2x\left(x^2-4x+4,5\right)=2x\left[\left(x-2\right)^2+0,5\right]\)

\(\Rightarrow F\left(x\right)\)có nghiệm duy nhất là 0

29 tháng 3 2019

Đa thức f(x) có 3 nghiệm 

+) f(0) = 2 x 0^3 - 8 x 0^ 2 + 9 x 0

           =  0 - 0 + 0

           = 0

+)

27 tháng 6 2024

2\(x^3\) - 8\(x^2\) + 9\(x\) = 0

\(x\)(2\(x^2\)  - 8\(x\) + 9) = 0

\(\left[{}\begin{matrix}x=0\\2x^2-8x+9=0\end{matrix}\right.\)

 2\(x^2\) - 8\(x\) + 9 = 0 

2\(x^2\) - 4\(x\) - 4\(x\) + 8 + 1 = 0

(2\(x^2\) - 4\(x\)) - (4\(x\) - 8) + 1 = 0

2\(x\)(\(x-2\)) - 4(\(x-2\)) + 1 = 0

  2(\(x-2\))(\(x\) - 2) + 1 = 0

   2(\(x-2\))2 + 1 = 0 (vô  lí) vì (\(x\) - 2)2 ≥ 0 \(\forall\)\(x\) ⇒ 2.(\(x-2\))2  +1 ≥ 1 > 0

Vậy 2\(x^3\) - 8\(x^2\) + 9\(x\) = 0 có nhiều nhất 1 nghiệm và đó là \(x\) = 0