chứng tỏ A=1/1 ✖ 2+1/2 ✖ 3+...+1/99 ✖ 100<1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot...\cdot\dfrac{7}{8}=\dfrac{1}{8}\)
\(B=\left(1-\dfrac{1}{3}\right)\cdot\left(1-\dfrac{1}{6}\right)\cdot\left(1-\dfrac{1}{10}\right)\cdot\left(1-\dfrac{1}{15}\right)\cdot...\cdot\left(1-\dfrac{1}{780}\right)\)
\(B=\left(1-\dfrac{1}{3+6+10+15+...+780}\right)\)
\(B=\left(1-\dfrac{1}{\left(780-3\right)\div3+1}\right)\)
\(B=\left(1-\dfrac{1}{260}\right)\)
\(B=\dfrac{259}{260}\)
Ta có: \(\dfrac{-5}{13}\cdot\dfrac{3}{7}-\dfrac{2}{17}\cdot\dfrac{8}{13}+\dfrac{5}{13}\cdot\dfrac{1}{7}\)
\(=\dfrac{5}{13}\left(-\dfrac{3}{7}+\dfrac{1}{7}\right)-\dfrac{2}{17}\cdot\dfrac{8}{13}\)
\(=\dfrac{5}{13}\cdot\dfrac{-2}{7}-\dfrac{2}{17}\cdot\dfrac{8}{13}\)
\(=\dfrac{-10}{91}-\dfrac{16}{221}\)
\(=\dfrac{-282}{1547}\)
⇔\(x\) x 1=\(\dfrac{8}{3}\)
⇔\(x\) =\(\dfrac{8}{3}\)
Vậy \(x\)=\(\dfrac{8}{3}\)
\(\Rightarrow y\times\left(2+\dfrac{1}{5}\right)=\dfrac{8}{5}\\ \Rightarrow y\times\dfrac{11}{5}=\dfrac{8}{5}\\ \Rightarrow y=\dfrac{8}{5}:\dfrac{11}{5}=\dfrac{8}{5}\times\dfrac{5}{11}=\dfrac{8}{11}\)
C1 : ( 2,45 + 7,55 ) x 2,75
= 10 x 2,75
= 27,5
C2 : ( 2,45 + 7,55 ) x 2,75
= 2,45 x 2,75 + 7,55 x 2,75
= 6,7375 + 20,7625
= 27,5
C1 : ( 25,5 - 17,15 ) x 100
= 8,35 x 100
= 835
C2 : ( 25,5 - 17,15 ) x 100
= 25,5 x 100 - 17,15 x 100
= 2550 - 1715
= 835
C1 : 5 x 67,35 x 20
= 336,75 x 20
= 6735
C2 : 5 x 67,35 x 20
= 5 x 20 x 67,35
= 100 x 67,35
= 6735
Ta có: A = 1/1x2 + 1/2x3 + .... + 1/99x100
= 1x(1/1x2 + 1/2x3 + ... + 1/99x100)
= 1x(1 - 1/2 + 1/2 - 1/3 + ... + 1/99 - 1/100)
= 1x(1-1/100)
= 1 x 99/100
= 99/100
Ta có: 99/100 < 1 vì tử số bé hơn mẫu số
=> A = 1/1x2+1/2x3+...+1/99x100 < 1
(ko bik cách trình bày)