K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2021

Ta có: \(P=ab+\dfrac{4}{ab}+4\ge2\sqrt{ab.\dfrac{4}{ab}+4}=8\)

Dấu '=' xảy ra <=> \(\left\{{}\begin{matrix}ab=2\\1\le a,b\le2\end{matrix}\right.\)

Lại có: \(1\le a\le2,1\le b\le2\)

\(\Rightarrow1\le ab\le4\Leftrightarrow\left(ab-1\right)\left(ab-4\right)\le0\Leftrightarrow\left(ab\right)^2\le5ab-4\)

\(\Rightarrow P=\dfrac{\left(ab\right)^2+4ab+4}{ab}\le\dfrac{5ab-4+4ab+4}{ab}=9\)

Dấu '=' xảy ra <=> \(\left[{}\begin{matrix}ab=1\\ab=4\end{matrix}\right.\) và \(1\le a,b\le2\) \(\Leftrightarrow\left[{}\begin{matrix}a=b=2\\a=b=1\end{matrix}\right.\)

Vậy \(Min_P=8\Leftrightarrow ab=2;1\le a,b\le2\)

\(Max_P=9\Leftrightarrow\left[{}\begin{matrix}a=b=1\\a=b=2\end{matrix}\right.\)

2 tháng 1 2021

Từ giả thiết \(-2\le a,b,c\le3\) suy ra:

\(\left\{{}\begin{matrix}\left(a+2\right)\left(a-3\right)\le0\\\left(b+2\right)\left(b-3\right)\le0\\\left(c+2\right)\left(c-3\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a^2-a-6\le0\\b^2-b-6\le0\\c^2-c-6\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a\ge a^2-6\\b\ge b^2-6\\c\ge c^2-6\end{matrix}\right.\)

\(\Rightarrow M=a+b+c\ge\left(a^2+b^2+c^2\right)-18=4\)

\(min=4\Leftrightarrow\left(a;b;c\right)=\left(2;3;3\right)\) và các hoán vị

2 tháng 1 2021

Nhầm

\(\left(a;b;c\right)=\left(-2;3;3\right)\) và các hoán vị

 

21 tháng 5 2017

Câu hỏi của Nguyễn Hoàng Kiều Trinh - Toán lớp 9 - Học toán với OnlineMath

1 tháng 5 2015

b khác 0 . Chia cả tử và mẫu của A cho b ta được

\(A=\frac{2015.\frac{a}{b}+1}{2015.\frac{a}{b}-1}\). Đặt a/b = y. y \(\le1\) vì a \(\le b\)

=> \(A=\frac{2015.y+1}{2015.y-1}=\frac{2015y-1+2}{2015y-1}=1+\frac{2}{2015y-1}\)

Vì  y \(\le1\) => 2015y -1 \(\le\) 2014 => \(\frac{2}{2015y-1}\ge\frac{2}{2014}=\frac{1}{1007}\Rightarrow A\ge1+\frac{1}{1007}=\frac{1008}{1007}\)

Vậy A nhỏ nhất bằng 1008/1007 khi y = 1 => a /b  = 1 => a = b

 

2 tháng 6 2018

Ta có:

 \(P=f\left(x\right)=-3x^2-x+4,\left(a=-3,b=-1,c=4\right)\)có đồ thị là 1 Parapol có bề lõm hướng xuống vì \(a< 0\)

\(\Rightarrow P\) đạt GTLN tại \(x=-\frac{b}{2a}=-\frac{-1}{2.\left(-3\right)}=-\frac{1}{6}\)

\(\Rightarrow maxP=f\left(-\frac{1}{6}\right)=-3\left(-\frac{1}{6}\right)^2-\left(-\frac{1}{6}\right)+4=\frac{49}{12}\).

Vì \(-1\le-\frac{1}{6}\le3\) nên P sẽ tăng khi \(-1\le x< -\frac{1}{6}\) và P sẽ giảm khi \(-\frac{1}{6}< x\le3\)

\(f\left(-1\right)=-3\left(-1\right)^2-\left(-1\right)+4=2\)

\(f\left(3\right)=-3\left(3\right)^2-\left(3\right)+4=-26\)

\(\Rightarrow minP=f\left(3\right)=-26\)