K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2019

làm a thôi nha :D 

a) \(C=\left(\frac{x^2+x}{x^2-2x+1}\right):\left(\frac{x+1}{x}-\frac{1}{1-x}+\frac{2-x^2}{x^2-x}\right)\)

\(C=\frac{x\left(x+1\right)}{x^2-2x+1}.\left[\frac{x+1}{x}-\frac{1}{-\left(x-1\right)}+\frac{2-x^2}{x\left(x+1\right)}\right]\)

\(C=\frac{x\left(x+1\right)}{x^2-2x+1}.\left[\frac{x+1}{x}+\frac{1}{x-1}+\frac{2-x^2}{x\left(x-1\right)}\right]\)

\(C=\frac{x\left(x+1\right)}{x^2-2x+1}.\left[\frac{x+1}{x}+\frac{x+2-x^2}{x\left(x-1\right)}\right]\)

\(C=\frac{x\left(x+1\right)}{x^2-2x+1}.\left[\frac{\left(x-1\right)\left(x+1\right)+x+2-x^2}{x\left(x-1\right)}\right]\)

\(C=\frac{x+1}{x^2-2x+1}.\frac{x^2-1+x+2-x^2}{x-1}\)

\(C=\frac{x+1}{\left(x^2-2x+1\right)}.\frac{1.x}{x-1}\)

\(C=\frac{\left(x+1\right)^2}{x^3-x^2-2x^2+2x+x-1}\)

\(C=\frac{x^2+2x+1}{x^3-3x^2+3x-1}\)

1 tháng 2 2019

a)\(C=\left[\frac{x.\left(x+1\right)}{\left(x-1\right)^2}\right]:\left[\frac{x+1}{x}-\frac{1}{-\left(x-1\right)}+\frac{-x^2+2}{x.\left(x-1\right)}\right]\)

\(C=\left[\frac{x.\left(x+1\right)}{\left(x-1\right)^2}\right]:\left[\frac{x^2-1}{x.\left(x-1\right)}+\frac{x}{x.\left(x-1\right)}+\frac{-x^2+2}{x.\left(x-1\right)}\right]\)

\(C=\left[\frac{x.\left(x+1\right)}{\left(x-1\right)^2}\right]:\left[\frac{x^2-1+x-x^2+2}{x.\left(x-1\right)}\right]\)

\(C=\left[\frac{x.\left(x+1\right)}{\left(x-1\right)^2}\right]:\left[\frac{x+1}{x.\left(x-1\right)}\right]=\left[\frac{x.\left(x+1\right)}{\left(x-1\right)^2}\right].\left[\frac{x.\left(x-1\right)}{x+1}\right]=\frac{x.\left(x+1\right).x}{\left(x-1\right).\left(x+1\right)}=\frac{x^2}{x-1}\)

b)\(\text{Để B nguyên }\Rightarrow x^2⋮x-1\)

\(x^2=x^2-1+1=\left(x-1\right).\left(x+1\right)+1\)

\(\Rightarrow\text{Để }x^2⋮x-1\Rightarrow1⋮x-1\Rightarrow x-1\inƯ\left(1\right)=\left\{\pm1\right\}\Rightarrow x\in\left\{2;0\right\}\)

9 tháng 12 2018

a) Phân thức M xác định khi và chỉ khi :

+) \(2x-2\ne0\Leftrightarrow x\ne1\)

+) \(2x+2\ne0\Leftrightarrow x\ne-1\)

+) \(1-\frac{x-3}{x+1}\ne0\)

\(\Leftrightarrow x-3\ne x+1\)

\(\Leftrightarrow0x\ne4\left(\text{luôn đúng}\right)\)

Vậy \(x\ne\left\{1;-1\right\}\)

b) \(M=\left(\frac{x-2}{2x-2}-\frac{x+3}{2x+2}+\frac{3}{2x-2}\right):\left(1-\frac{x-3}{x+1}\right)\)

\(M=\left(\frac{\left(x-2\right)\left(2x+2\right)}{\left(2x-2\right)\left(2x+2\right)}-\frac{\left(x+3\right)\left(2x-2\right)}{\left(2x-2\right)\left(2x+2\right)}+\frac{3\left(2x+2\right)}{\left(2x-2\right)\left(2x+2\right)}\right):\left(\frac{x+1-x+3}{x+1}\right)\)

\(M=\left(\frac{2x^2-2x-4-2x^2-4x+6+6x+6}{\left(2x-2\right)\left(2x+2\right)}\right):\left(\frac{4}{x+1}\right)\)

\(M=\frac{8}{2\left(x-1\right)2\left(x+1\right)}\cdot\frac{x+1}{4}\)

\(M=\frac{8\left(x+1\right)}{4\left(x-1\right)\left(x+1\right)\cdot4}\)

\(M=\frac{8\left(x+1\right)}{8\left(x+1\right)\left(x-1\right)}\)

\(M=\frac{1}{x-1}\)

9 tháng 12 2018

\(M=\left(\frac{x-2}{2x-2}-\frac{x+3}{2x+2}+\frac{3}{2x-2}\right):\left(1-\frac{x-3}{x+1}\right)\)

\(=\left(\frac{x+1}{2x-2}-\frac{x+3}{2x+2}\right):\left(\frac{4}{x+1}\right)=\left[\frac{\left(x+1\right)\left(2x+2\right)-\left(x+3\right)\left(2x-2\right)}{\left(2x-2\right)\left(2x+2\right)}\right]:\left(\frac{4}{x+1}\right)\)

\(=\left[\frac{2x^2+4x+2-2x^2+2x+6-6x+6}{4x^2-4}\right]:\left(\frac{4}{x+1}\right)\)

\(=\left[\frac{6x+8-6x+6}{4x^2-4}\right]:\left(\frac{4}{x+1}\right)\)

\(=\frac{14}{4x^2-4}:\left(\frac{4}{x+1}\right)=\frac{14x+14}{16x^2-16}=\frac{7x+7}{8x^2-8}\)

31 tháng 10 2019

a) \(P=\left(\frac{1}{x-1}-\frac{x}{1-x^3}.\frac{x^2+x+1}{x+1}\right):\frac{2x+1}{x^2+2x+1}\)

\(=\left(\frac{1}{x-1}-\frac{x}{\left(1-x\right)\left(1+x+x^2\right)}.\frac{x^2+x+1}{x+1}\right).\frac{x^2+2x+1}{2x+1}\)

\(=\left(\frac{1}{x-1}-\frac{x}{\left(x-1\right)\left(x+1\right)}\right).\frac{x^2+2x+1}{2x+1}\)

\(=\left(\frac{x+1}{\left(x-1\right)\left(x+1\right)}-\frac{x}{\left(x-1\right)\left(x+1\right)}\right).\frac{x^2+2x+1}{2x+1}\)

\(=\frac{1}{\left(x-1\right)\left(x+1\right)}.\frac{\left(x+1\right)^2}{2x+1}\)

\(=\frac{x+1}{\left(x-1\right)\left(2x+1\right)}\)

31 tháng 10 2019

b) \(Q=\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{5x-5x}{2x\left(x+5\right)}\)

\(=\frac{x\left(x^2+2x\right)}{2x\left(x+5\right)}+\frac{2\left(x-5\right)\left(x+5\right)}{2x\left(x+5\right)}+\frac{50-5x}{2x\left(x+5\right)}\)

\(=\frac{x^3+2x^2+2\left(x^2-25\right)+50-5x}{2x\left(x+5\right)}\)

\(=\frac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}\)

\(=\frac{x^3+4x^2-5x}{2x\left(x+5\right)}\)

\(=\frac{x^3-x^2+5x^2-5x}{2x\left(x+5\right)}\)

\(=\frac{x^2\left(x-1\right)+5x\left(x-1\right)}{2x\left(x+5\right)}\)

\(=\frac{\left(x-1\right)\left(x^2+5x\right)}{2x\left(x+5\right)}\)

\(=\frac{x\left(x-1\right)\left(x+5\right)}{2x\left(x+5\right)}\)

\(=\frac{x-1}{2}\)