cho tam giác ABC có AB=AC.Gọi M là một điểm nằm trong tam giác sao cho MB=MC.N là trung điểm của BC.CMR: a,AM là tia phân giác của góc BAC b,ba điểm A,M,N thẳng hàng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét tam giác ABM và tam giác ACM có:
AB=AC
AM chung
BM=CM
=> tam giác ABM= tam giác ACM (c.c.c)
b,
Tam giác ABM= tam giác ACM => góc BAM= góc CAM
=> AM là tia phân giác của góc BAC
c, AM là tia phân giác của góc BAC => AN là tia phân giác của góc BAC
=> A, M, N thẳng hàng
ta có tam giác ABC cân tại A ( AB=AC) suy ra \(\widehat{ABC}=\widehat{ACB}\)
lại có tam giác MBC cân tại M ( MB =MC ) suy ra \(\widehat{MBC}=\widehat{MCB}\)
suy ra \(\widehat{ABC}-\widehat{MBC}=\widehat{ACB}-\widehat{MCB}\)( vì tia MB nằm giữa 2 tia BA và BC , tia MC nằm giữa 2 tia CB và CA )
hay \(\widehat{ABM}=\widehat{ACM}\)
xét \(\Delta ABM\)và \(\Delta ACM\)có \(\hept{\begin{cases}AMchung\\AB=AC\left(gt\right)\\\widehat{ABM}=\widehat{ACM}\left(cmt\right)\end{cases}}\)
do đó \(\Delta ABM=\Delta ACM\left(c.g.c\right)\)
\(\Rightarrow\widehat{BAM}=\widehat{CAM}\)( 2 góc tương ứng )
mà tia AM nằm giữa 2 tia AB và AC suy ra AM là phân giác góc BAC (1)
b) xét \(\Delta ANB\)và \(\Delta ANC\)có \(\hept{\begin{cases}ANchung\\NB=NC\left(gt\right)\\AB=AC\left(gt\right)\end{cases}}\)
do đó \(\Delta ANB=\Delta ANC\left(c.c.c\right)\)
suy ra \(\widehat{BAN}=\widehat{CAN}\)( 2 góc tương ứng )
mà tia AN nằm giữa 2 tia AB và AC do đó AN là phân giác góc BAC (2)
từ (1) và (2) suy ra AM trùng AN hay A;M:N thẳng hàng
c) xét \(\Delta MNB\)và \(\Delta MNC\)có \(\hept{\begin{cases}MB=MC\left(gt\right)\\\widehat{MBN}=\widehat{MCN}\left(cmt\right)\\BN=NC\end{cases}}\)
do đó tam giác MNB = tam giác MNC (c.g.c)
do đó \(\widehat{MNB}=\widehat{MNC}\)và \(\widehat{MNB}+\widehat{MNC}=180^o\)hay \(\widehat{MNB}=\widehat{MNC}=\frac{180^o}{2}=90^o\)hay MN vuông góc với BC và BN = NC hay MN là trung trực BC
a) Xét Δ AMC và Δ AMB có:
AC = AB (gt)
AM là cạnh chung
MC = MB (gt)
⇒Δ AMC = Δ AMB (c.c.c)
⇒∠CAM = ∠BAM (2 góc tương ứng)
⇒AM là phân giác BAC ( đpcm)
b) Xét t/g ANC và t/g ANB có:
AC = AB (gt)
AN là cạnh chung
NC = NB (gt)
⇒ Δ ANC = Δ ANB (c.c.c)
⇒ ∠CAN = ∠BAN (2 góc tương ứng)
⇒ AN là phân giác BAC
Như vậy, AM và AN đều là phân giác của BAC
Nên AM và AN trùng nhau hay A,M,N thẳng hàng (đpcm)
c)Vì Δ ANC = Δ ANB (câu b)
⇒ ∠ANC = ∠ANB (2 góc tương ứng)
Mà ∠ANC + ∠ANB = 180o ( kề bù)
Nên ∠ANC = ∠ANB = 90o
⇒AN vg BC hay MN vg BC
Mà CN = BN (gt)
Do đó, MN là đường trung trực của BC ( đpcm)
Cảm ơn bn nha
Nhưng lần sau có cả hình vẽ thì sẽ tốt hơn 😊😊😊😄😄
#Tự vẽ hình nhé bạn#
a ) Xét \(\Delta\)AMB và \(\Delta\)AMC có :
- AB = AC ( gt )
- AM : cạnh chung
- MB = MC ( gt )
\(\Rightarrow\Delta\)AMB = \(\Delta\)AMC ( c - c - c )
\(\Rightarrow\)BÂM = CÂM ( 2 góc tương ứng )
\(\Rightarrow\)AM là tia phân giác của BÂC ( 1 )
b ) Ta có : N là trung điểm BC
\(\Rightarrow\)AN là đường trung tuyến của \(\Delta\)ABC
\(\Delta\)ABC cân tại A có AN là đường trung tuyến \(\Rightarrow\)AN cũng là đường phân giác của BÂC ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)Ba điểm A, M, N thẳng hàng
c ) Ta có : \(\Delta\)MBC cân tại M ( vì MB = MC ) mà có MN là đường trung tuyến
\(\Rightarrow\)MN cũng là đường trung trực của BC
a) Xét Δ AMC và Δ AMB có:
AC = AB (gt)
AM là cạnh chung
MC = MB (gt)
⇒Δ AMC = Δ AMB (c.c.c)
⇒∠CAM = ∠BAM (2 góc tương ứng)
⇒AM là phân giác BAC ( đpcm)
b) Xét t/g ANC và t/g ANB có:
AC = AB (gt)
AN là cạnh chung
NC = NB (gt)
⇒ Δ ANC = Δ ANB (c.c.c)
⇒ ∠CAN = ∠BAN (2 góc tương ứng)
⇒ AN là phân giác BAC
Như vậy, AM và AN đều là phân giác của BAC
Nên AM và AN trùng nhau hay A,M,N thẳng hàng (đpcm)
c)Vì Δ ANC = Δ ANB (câu b)
⇒ ∠ANC = ∠ANB (2 góc tương ứng)
Mà ∠ANC + ∠ANB = 180o ( kề bù)
Nên ∠ANC = ∠ANB = 90o
⇒AN vg BC hay MN vg BC
Mà CN = BN (gt)
Do đó, MN là đường trung trực của BC ( đpcm)
a: Sửa đề: ΔABM=ΔACM
Xét ΔABM và ΔACM có
AB=AC
MB=MC
AM chung
Do đó: ΔABM=ΔACM
b: ΔABM=ΔACM
=>\(\widehat{BAM}=\widehat{CAM}\)
=>AM là phân giác của \(\widehat{BAC}\)
c: AB=AC
MB=MC
Do đó: AM là đường trung trực của BC
=>AM\(\perp\)BC
xet tam giac bma va tam giac cma co;am chung,ab=ac,mb=mc nen tam giac bma=tam gjaccma[c.c.c].vi tam giac bma=tam giac cma nengoc bma bang goc cma nenam la phan giac cua gocbac