PT A= \(\frac{x+2\sqrt{x}+1}{x+\sqrt{x}}\) có rút gọn đc ko ak
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{9x-9}+1=13\Leftrightarrow3\sqrt{x-1}=12\Leftrightarrow\sqrt{x-1}=4\Leftrightarrow x-1=16\Leftrightarrow x=17\)
\(2.\text{bạn tự tìm đk}\)
\(A=\left(\frac{2}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}-\frac{2\sqrt{x}-2}{\sqrt{x}-1}\right)\)
\(A=\frac{2\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\left(\sqrt{x}-2\right)=\sqrt{x}\left(\sqrt{x}-2\right)< 0\Leftrightarrow x-2\sqrt{x}< 0\Leftrightarrow\left(\sqrt{x}-1\right)^2< 1\Leftrightarrow-1< \sqrt{x}-1< 1\)
\(\Leftrightarrow0< x< 4\)
Câu 1:
\(\sqrt{9x-9}+1=13\)\(ĐKXĐ:x\ge1\)
\(\Leftrightarrow\sqrt{9\left(x-1\right)}=12\)
\(\Leftrightarrow3\sqrt{x-1}=12\)
\(\Leftrightarrow\sqrt{x-1}=4\)
\(\Leftrightarrow x-1=16\)
\(\Leftrightarrow x=17\)(tm ĐKXĐ)
Câu 2
ĐKXĐ: \(\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)
\(A=\left(\frac{2}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{x-\sqrt{x}}\right):\left(\frac{x+\sqrt{x}}{\sqrt{x}+1}-\frac{2\sqrt{x}-2}{\sqrt{x}-1}\right)\)
\(=\left(\frac{2}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}-\frac{2\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right)\)
\(=\left(\frac{2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\sqrt{x}-2\right)\)
\(=\left(\frac{2\sqrt{x}-\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right).\frac{1}{\sqrt{x}-2}\)
\(=\left(\frac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right).\frac{1}{\sqrt{x}-2}\)
\(=\frac{1}{x-2\sqrt{x}}\)
b Để A có giá trị âm \(\Rightarrow\frac{1}{x-2\sqrt{x}}< 0\)
vì 1>0
\(\Rightarrow x-2\sqrt{x}< 0\)
\(\Leftrightarrow0< \sqrt{x}< 2\)
\(\Leftrightarrow0< x< 4\)
kết hợp ĐKXĐ: \(\Rightarrow1< x< 4\)
2/ x2 + 2x - 2x - 9√x + 14 = ( x2 - 2x + 1) + (2x - 2×2×9√x /4 + 81/16) + 127/16 = (x - 1)2 + [ √(2x) - 9/4]2 + 127/16 > 0 với mọi x>= 1
Vậy phương trình vô nghiệm
Bài rút gọn để rút gọn được tử với mẫu thì phải phân tích được ra nhân tử chung cho cả tử và mẫu mà ta thấy tử không thể phân tích thành nhân tử được do tử luôn >0. Mẫu và tử lại cùng bậc nữa nên mình đầu hàng không rút gọn được
Câu 1 :
Đk: \(x\ge1\)
\(\sqrt{x-1}+\sqrt{2x-1}=5\\ \Leftrightarrow x-1+2\sqrt{\left(x-1\right)\left(2x-1\right)}+2x-1=25\\ \Leftrightarrow2\sqrt{2x^2-3x+1}=27-3x\\ \)
\(\Leftrightarrow\begin{cases}27-3x\ge0\\4\left(2x^2-3x+1\right)=9x^2-162x+729\end{cases}\) \(\Leftrightarrow\begin{cases}x\le9\\x^2-150x+725=0\end{cases}\)
\(\Leftrightarrow\begin{cases}x\le9\\x=145hoặcx=5\end{cases}\)
với x= 5 thoản mãn điều kiện, x=145 loại
Vậy \(S=\left\{5\right\}\)
\(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}\right):\left(\frac{2}{x^2-1}-\frac{x}{x-1}+\frac{1}{x+1}\right)\) Đkxđ : x khác 1 ; x khác -1
\(A=\frac{\left(x+1\right)^2-\left(x-1\right)^2}{x^2-1}:\frac{2-x\left(x+1\right)+x-1}{x^2-1}\)
\(A=\frac{x^2+2x+1-x^2+2x-1}{x^2-1}.\frac{x^2-1}{2-x^2-1+x-1}\)
\(A=\frac{4x}{-x^2+x}=\frac{4x}{x\left(1-x\right)}\)
\(A=\frac{4}{1-x}\)
1.\(\frac{5+\sqrt{5}}{5-\sqrt{5}}+\frac{5-\sqrt{5}}{5+\sqrt{5}}=\frac{\left(5+\sqrt{5}\right)\left(5+\sqrt{5}\right)}{\left(5-\sqrt{5}\right)\left(5+\sqrt{5}\right)}+\frac{\left(5-\sqrt{5}\right)\left(5-\sqrt{5}\right)}{\left(5-\sqrt{5}\right)\left(5+\sqrt{5}\right)}\)
\(=\frac{25+10\sqrt{5}+5}{25-5}+\frac{25-10\sqrt{5}+5}{25-5}\)
\(=\frac{25+10\sqrt{5}+5+25-10\sqrt{5}+5}{20}\)
\(=\frac{60}{20}=3\)
2.
a) \(\sqrt{45x}-2\sqrt{20x}+2\sqrt{80x}=21\)
ĐK : x ≥ 0
<=> \(\sqrt{5x\cdot9}-2\sqrt{5x\cdot4}+2\sqrt{5x\cdot16}=21\)
<=> \(\sqrt{5x\cdot3^2}-2\sqrt{2^2\cdot5x}+2\sqrt{5x\cdot4^2}=21\)
<=> \(\left|3\right|\sqrt{5x}-2\cdot\left|2\right|\sqrt{5x}+2\cdot\left|4\right|\sqrt{5x}=21\)
<=> \(\sqrt{5x}\cdot\left(3-4+8\right)=21\)
<=> \(\sqrt{5x}\cdot7=21\)
<=> \(\sqrt{5x}=3\)
<=> \(5x=9\)
<=> \(x=\frac{9}{5}\left(tm\right)\)
ơ đang làm lại bấm " Gửi trả lời " ._.
2b) \(\sqrt{x^2-10x+25}=4\)
<=> \(\sqrt{\left(x-5\right)^2}=4\)
<=> \(\left|x-5\right|=4\)
<=> \(\orbr{\begin{cases}x-5=4\\x-5=-4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=9\\x=1\end{cases}}\)
3. \(A=\left(\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}}\right)\div\left(\frac{\sqrt{x}+1}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)
ĐK : \(\hept{\begin{cases}x>0\\x\ne1\\x\ne4\end{cases}}\)
\(=\left(\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x-1}\right)}\right)\div\left(\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\right)\)
\(=\left(\frac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\div\left(\frac{x-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}-\frac{x-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\right)\)
\(=\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\div\left(\frac{x-1-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\right)\)
\(=\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\div\frac{3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\times\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{3}\)
\(=\frac{\sqrt{x}-2}{3\sqrt{x}}\)
\(C=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2}{\sqrt{x}+1}-\frac{2}{x-1}\)
\(C=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(C=\frac{\sqrt{x}\left(\sqrt{x}+1\right)-2\left(\sqrt{x}-1\right)-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(C=\frac{x+\sqrt{x}-2\sqrt{x}+2-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(C=\frac{\sqrt{x}\left(\sqrt{x}+1-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(C=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(C=\frac{\sqrt{x}}{\sqrt{x}+1}\)
P/s tham khảo nha
\(A=\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}}\)