Cho tam giác ABC. 1 đường thẳng cắt các cạnh BC,AC theo thứ tự ở D,E và cắt đường thẳng BA ơe F. vẽ hbh BDEH. Đường thẳng đi qua F và song song vs BC cắt HA ở I. CMR: FI=DC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo nha .
Gọi K là giao điểm của AC và FI , M là giao điểm của AB và EH . Ta có :
\(\frac{FI}{FK}=\frac{MH}{ME}\)(1)
\(\frac{DC}{FK}=\frac{DE}{FE}\)(2)
\(\frac{BD}{ME}=\frac{FD}{FE}\)
\(\Leftrightarrow\frac{BD-ME}{ME}=\frac{FD-FE}{FE}\)
\(\Rightarrow\frac{MH}{ME}=\frac{DE}{FE}\)(3)
Từ (1);(2) và (3)
\(\Rightarrow FI=DC\)(đpcm)
Từ E kẻ ED // AC ( D thuộc cạnh AB )
Ta có :
\(\widehat{DBE}=\widehat{HFC}\); \(\widehat{DEB}=\widehat{HCF}\); \(\widehat{DAE}=\widehat{GEA}\); \(\widehat{EDA}=\widehat{AGE}\)
Và ta chứng minh được \(\Delta BDE=\Delta FHC\left(g-c-g\right)\)
\(\Rightarrow\)\(BD=FH\)( 1 )
\(\Delta DAE=\Delta GEA\left(g-c-g\right)\)
\(\Rightarrow\)\(AD=EG\)( 2 )
Từ ( 1 ) ; ( 2 ) suy ra BD + AD = FH + EG hay EG + FH = AB ( Vi D thuộc cạnh AB )
Câu hỏi của Linh Đặng Thị Mỹ - Toán lớp 7 - Học toán với OnlineMath