CMR:\(\frac{7}{3}+\frac{11}{3^2}+\frac{15}{3^3}+...+\frac{2019}{3^{504}}< \frac{9}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{1}{3}-\frac{3}{4}+0,6+\frac{1}{64}-\frac{2}{9}-\frac{1}{36}+\frac{1}{15}\)
\(\Rightarrow B=\frac{3}{15}-\frac{48}{64}+\frac{9}{15}+\frac{1}{64}-\frac{8}{36}-\frac{1}{36}+\frac{1}{15}\)
\(\Rightarrow B=\frac{3}{15}+\frac{9}{15}+\frac{1}{15}+\left(-\frac{48}{64}+\frac{1}{64}\right)+\left(-\frac{8}{36}-\frac{1}{36}\right)\)
\(\Rightarrow B=\frac{13}{15}-\frac{47}{64}-\frac{1}{4}\)
\(\Rightarrow B=-\frac{113}{960}\)
\(C=0\)
\(D=\frac{1}{99}-\frac{1}{99.98}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(\Rightarrow D=\frac{1}{99}-\frac{1}{99}+\frac{1}{98}-\frac{1}{98}+...-\frac{1}{3}+\frac{1}{2}-\frac{1}{2}+1\)
\(\Rightarrow D=1\)
D= \(\frac{1}{99}-\frac{1}{99.98}-\frac{1}{98.97}......-\frac{1}{3.2}-\frac{1}{2.1}\)
=\(\frac{1}{99}-\left(\frac{1}{1.2}+\frac{1}{2.3}+.......+\frac{1}{97.98}+\frac{1}{98.99}\right)\)
=\(\frac{1}{99}-\left(1-\frac{1}{2}+\frac{1}{2}-.....-\frac{1}{98}-\frac{1}{99}\right)\)
=\(\frac{1}{99}-\left[1-(\frac{1}{2}-\frac{1}{2}+......+\frac{1}{98}-\frac{1}{99})\right]\)
=\(\frac{1}{99}-\left(1-0-0-.....-0-\frac{1}{99}\right)\)
=\(\frac{1}{99}-1-\frac{1}{99}\)
=1
giúp mình đi
Đặt A=\(\frac{7}{3}+\frac{11}{3^2}+\frac{15}{3^3}+\frac{19}{3^4}+...+\frac{2015}{3^{503}}+\frac{2019}{3^{504}}\)
3A=\(7+\frac{11}{3}+\frac{15}{3^2}+\frac{19}{3^3}+...+\frac{2015}{3^{502}}+\frac{2019}{5^{503}}\)
=> 3A-A=(\(7+\frac{11}{3}+\frac{15}{3^2}+\frac{19}{3^3}+...+\frac{2015}{3^{502}}+\frac{2019}{5^{503}}\))-(\(\frac{7}{3}+\frac{11}{3^2}+\frac{15}{3^3}+\frac{19}{3^4}+...+\frac{2015}{3^{503}}+\frac{2019}{3^{504}}\))
2A=\(7+\left(\frac{11}{3}-\frac{7}{3}\right)+\left(\frac{15}{3^2}-\frac{11}{3^2}\right)+\left(\frac{19}{3^3}-\frac{15}{3^3}\right)+...+\left(\frac{2019}{3^{503}}-\frac{2015}{3^{503}}\right)-\frac{2019}{3^{504}}\)
2A=\(7+\frac{4}{3}+\frac{4}{3^2}+\frac{4}{3^3}+...+\frac{4}{3^{503}}-\frac{2019}{3^{504}}\)
=> A=\(\frac{7}{2}+2\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{503}}\right)-\frac{2019}{2.3^{504}}\)
Em làm tiếp Xét
B=\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{503}}\)
3B=\(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{502}}\)
=> 3B-B=\(1-\frac{1}{3^{503}}\)
=> B=\(\frac{1}{2}-\frac{1}{2.3^{503}}\)
=> A=\(\frac{7}{2}+2\left(\frac{1}{2}-\frac{1}{2.3^{503}}\right)-\frac{2019}{2.3^{504}}=\frac{9}{2}-\frac{1}{3^{503}}-\frac{2019}{2.3^{504}}< \frac{9}{2}\)