K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2016

mình biết nè

2 tháng 2 2016

em chưa hok

6 tháng 2 2020

A B C D H G F E O I

Kẻ OI vuông góc với AB tại I

a) Ta có: 

OI // GF => \(\frac{AI}{AF}=\frac{OI}{GF}\)

OI//HE => \(\frac{BO}{BH}=\frac{BI}{BE}=\frac{OI}{HE}\)

mà HE = GF 

=> \(\frac{BO}{BH}=\frac{AI}{AF}=\frac{BI}{BE}=\frac{AI+BI}{AF+BE}=\frac{AB}{AB+EF}\)

=> \(\frac{BH}{BO}=\frac{AB+EF}{AB}=1+\frac{EF}{AB}=1+\frac{HE}{BC}\)vì ABCD; FGHE là hình vuông

=> \(\frac{HE}{BC}=\frac{BH}{BO}-1=\frac{BH-BO}{BO}=\frac{OH}{OB}\)

Xét \(\Delta\)OHE và \(\Delta\)OBC có:

^OHE = ^OBC ( HE//CB; so le trong )

\(\frac{HE}{BC}=\frac{OH}{OB}\)

=> \(\Delta\)OHE ~ \(\Delta\)OBC 

b)  \(\Delta\)OHE ~ \(\Delta\)OBC 

=> ^HEO = ^BCO = ^BCE 

mà E và O nằm cùng phía so với BC

=> C; O ; E thẳng hàng

=> CE đi qua O

Chứng minh tương tự như câu a với  \(\Delta\)OAD ~ \(\Delta\)OGF

=> D; O; F thẳng hàng

=> DF đi qua O 

2 tháng 2 2016

17)\(AH^2=\frac{3b^2}{4};\Delta BCD;AD=b-\frac{a^2}{b}\)

MÀ \(AD^2=AH^2+DH^2=b^2-ab+a^2\)

 

2 tháng 2 2016

con cau 15,18

1) Tam giác ABC có I là giao điểm các tia phân giác của góc B và C, M là trung điểm của BC. Biết góc BIM=90 và BI=2IMa. Tính góc BACb.Vẽ IH vuông góc AC. Chứng minh rằng BA=3IH2)Cho tam giác ABC. Lấy các điểm D, E theo thứ tự trên các cạnh AB, AC sao cho BD=CE. Gọi M, N theo thứ tự là trung điểm của BC, DE. Chứng minh rằng đường thẳng MN tạo với các đường thẳng AB, AC các góc bằng nhau3)Cho tam giác ABC. Ở...
Đọc tiếp

1) Tam giác ABC có I là giao điểm các tia phân giác của góc B và C, M là trung điểm của BC. Biết góc BIM=90 và BI=2IM
a. Tính góc BAC
b.Vẽ IH vuông góc AC. Chứng minh rằng BA=3IH

2)Cho tam giác ABC. Lấy các điểm D, E theo thứ tự trên các cạnh AB, AC sao cho BD=CE. Gọi M, N theo thứ tự là trung điểm của BC, DE. Chứng minh rằng đường thẳng MN tạo với các đường thẳng AB, AC các góc bằng nhau

3)Cho tam giác ABC. Ở phía ngoài tam giác ấy vẽ tam giác đều ACE. Trên nửa mặt phẳng chứa C có bờ AB, vẽ tam giác đều ABD. Gọi H, K, M theo thứ tự là trung điểm của AB, AE, CD. Chứng minh rằng HKM là tam giác đều

4)Cho điểm M nằm trên đoạn thẳng AB. Trên cùng một nửa mặt phẳng bờ AB, vẽ các tam giác đều AMC, BMD. Gọi E, F theo thứ tự là trung điểm của AD, BC. Chứng minh rằng EF=1/2CD

0
14 tháng 7 2016

Xét ∆ CMB có EF là đường trung bình của ∆. 
=> EF // MB <=> EF // AB. (1) 
Xét ∆ ADM có KI là đường trung bình của ∆. 
=> KI // AM <=> KI // AB. (2) 
Từ (1);(2) => Tứ giác EFIK là hình thang. (3) 
Gọi giao của CM và AD là O. 
Xét ∆ COA có EK là đương trung bình ∆. 
=> EK // CA. 
Lại có KI // AM 
Mà CA hợp với AM góc 60 độ (∆ACM đều) 
nên EK sẽ hợp với KI góc 60 độ. hay góc EKI = 60 độ. 
Chưng minh tương tự với góc FIK. => góc EKI = góc FIK = 60 độ. (4) 
Từ (3);(4) => hình thang có 2 góc ở đáy bàng nhau là hình thang cân. => đpcm

Bạn vẽ thêm hình nhé ^_^

dựa vào đâu mà bạn nói EK la đường trung bình của Tam giác COA ?