tính (1-(2/42)).(1-(2/56)).(1-(2/72)).....(1-(2/9900))
chỉ cần trả lời đáp án
ai nhanh nhất mình sẽ tick
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M = \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\)
M = \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\)
M = 1 -\(\frac{1}{9}\)=\(\frac{8}{9}\)
`1/42 + 1/56 + 1/72 + .... + 1/9900`
`= 1/( 6*7) + 1/( 7*8 ) + ..... + 1/( 99*100)`
`= 1/6 - 1/7 + 1/7-1/8+....+1/99-1/100`
`= 1/6 - 1/100`
`= 50/300 - 3/300`
`= 47/300`
\(\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+...+\dfrac{1}{9900}\\ =\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+...+\dfrac{1}{99.100}\\ =\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+...+\dfrac{1}{99}-\dfrac{1}{100}\\ =\dfrac{1}{6}-\dfrac{1}{100}=\dfrac{47}{300}\)
Vì 1 cái chảo có thể chứa 2 cái bánh nên cho 2 cái bánh vào chảo cùng mội lúc là được. Mỗi mặt 1 phút nếu cho cùng 1 lần thì cuxg chỉ mất 2 phút hoy:))) Cứ như thế mà lảm
1/90 - 1/72 - 1/56 - 1/42 - 1/30 - 1/20 - 1/12 - 1/6 - 1/2
= 1/90 - ( 1/72 + 1/56 + 1/42 + 1/30 + 1/20 + 1/12 + 1/6 + 1/2)
= 1/90 - ( 1/2 + 1/6 + 1/12 + ...+ 1/72)
= 1/90 - ( 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/8.9)
= 1/90 - ( 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/8 - 1/9)
= 1/90 - ( 1 - 1/9)
= 1/90 - 8/9
= 1/90 - 80/90
= -79/90
1/90 - 1/72 - 1/56 - 1/42 - 1/30 - 1/20 - 1/12 - 1/6 - 1/2
= 1/90 - ( 1/72 + 1/56 + 1/42 + 1/30 + 1/20 + 1/12 + 1/6 + 1/2)
= 1/90 - ( 1/2 + 1/6 + 1/12 + ...+ 1/72)
= 1/90 - ( 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/8.9)
= 1/90 - ( 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/8 - 1/9)
= 1/90 - ( 1 - 1/9)
= 1/90 - 8/9
= 1/90 - 80/90
= -79/90
mk nha cac ban
\(\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-\frac{1}{42}-\frac{1}{30}-\frac{1}{20}-\frac{1}{12}-\frac{1}{6}-\frac{1}{2}\)
\(=\frac{1}{90}-\left(\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-\frac{1}{20}-\frac{1}{30}-\frac{1}{42}-\frac{1}{56}-\frac{1}{72}\right)\)
\(=\frac{1}{90}-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\right)\)
\(=\frac{1}{90}-\left(1-\frac{1}{9}\right)\)
\(=\frac{1}{90}-\frac{8}{9}\)
\(=\frac{-79}{90}\)
1/90 - 1/72 - 1/56 - ... - 1/6 - 1/2
= 1/90 - (1/2 + 1/6 + ... + 1/56 + 1/72)
= 1/90 - (1/1×2 + 1/2×3 + ... + 1/7×8 + 1/8×9)
= 1/90 - (1 - 1/2 + 1/2 - 1/3 + ... + 1/7 - 1/8 + 1/8 - 1/9)
= 1/90 - (1 - 1/9)
= 1/90 - 8/9
= 1/90 - 80/90
= -79/90
A= 1/2 + 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + 1/56 + 1/72 + 1/90
=1/(1.2)+1/(2.3)+1/(3.4)+1/(4.5) +1/(5.6)+1/(6.7)+1/(7.8) +1/(8.9)+1/(9.10)
=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5.+1/5-1/6... +1/9-1/10
=1-1/10
=9/10
\(\frac{8}{9}-\frac{1}{72}-\frac{1}{56}-...-\frac{1}{12}-\frac{1}{6}-\frac{1}{2}\)
\(=\frac{8}{9}-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{56}+\frac{1}{72}\right)\)
\(=\frac{8}{9}-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{7.8}+\frac{1}{8.9}\right)\)
\(=\frac{8}{9}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\right)\)
\(=\frac{8}{9}-\left(1-\frac{1}{9}\right)\)
\(=\frac{8}{9}-\frac{8}{9}=0\)