K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2017

\(A=\frac{1}{1.101}+\frac{1}{2.102}+\frac{1}{3.103}+...+\frac{1}{25.125}\)

\(A=\frac{1}{100}.\left(1-\frac{1}{101}\right)+\frac{1}{100}.\left(\frac{1}{2}-\frac{1}{102}\right)+\frac{1}{100}.\left(\frac{1}{3}-\frac{1}{103}\right)+...+\frac{1}{100}.\left(\frac{1}{25}-\frac{1}{125}\right)\)

\(A=\frac{1}{100}.\left(1-\frac{1}{101}+\frac{1}{2}-\frac{1}{102}+\frac{1}{3}-\frac{1}{103}+...+\frac{1}{25}-\frac{1}{125}\right)\)

\(A=\frac{1}{100}.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}-\frac{1}{101}-\frac{1}{102}-\frac{1}{103}-...-\frac{1}{125}\right)\)

\(B=\frac{1}{1.26}+\frac{1}{2.27}+\frac{1}{3.28}+...+\frac{1}{100.125}\)

\(B=\frac{1}{25}.\left(1-\frac{1}{26}\right)+\frac{1}{25}.\left(\frac{1}{2}-\frac{1}{27}\right)+\frac{1}{25}.\left(\frac{1}{3}-\frac{1}{28}\right)+...+\frac{1}{25}.\left(\frac{1}{100}-\frac{1}{125}\right)\)

\(B=\frac{1}{25}.\left(1-\frac{1}{26}+\frac{1}{2}-\frac{1}{27}+\frac{1}{3}-\frac{1}{28}+...+\frac{1}{100}-\frac{1}{125}\right)\)

\(B=\frac{1}{25}.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}-\frac{1}{26}-\frac{1}{27}-\frac{1}{28}-...-\frac{1}{125}\right)\)

\(B=\frac{1}{25}.\left(1+\frac{1}{2}+...+\frac{1}{25}+\frac{1}{26}+\frac{1}{27}+...+\frac{1}{100}-\frac{1}{26}-\frac{1}{27}-...-\frac{1}{100}-\frac{1}{101}-...-\frac{1}{125}\right)\)\(B=\frac{1}{25}.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}-\frac{1}{101}-\frac{1}{102}-\frac{1}{103}-...-\frac{1}{125}\right)\)

Ta thấy biểu thức trong ngoặc của hai vế A và B giống nhau

Vậy A : B = \(\frac{1}{100}:\frac{1}{25}=\frac{1}{4}\)

20 tháng 5 2017

\(A=\frac{1}{1.101}+\frac{1}{2.102}+\frac{1}{3.103}+...+\frac{1}{25.125}\)

\(\Rightarrow A=\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{24.25}\right)+\left(\frac{1}{101.102}+\frac{1}{102.103}+...+\frac{1}{124.125}\right)\)

\(A=\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{24}-\frac{1}{25}\right)+\left(\frac{1}{101}-\frac{1}{102}+\frac{1}{102}-\frac{1}{103}+...+\frac{1}{124}-\frac{1}{125}\right)\)

\(A=\left(1-\frac{1}{25}\right)+\left(\frac{1}{101}-\frac{1}{125}\right)\)

\(A=\frac{24}{25}+\frac{24}{12625}\)

Bạn tự tính luôn nha trog máy tính của mình là : 0,961... ( k làm thành phân số được )

27 tháng 2 2017

\(\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+.....+\frac{1}{97.101}\)

\(=\frac{1}{4}\left(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+......+\frac{4}{97.101}\right)\)

\(=\frac{1}{4}\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+.....+\frac{1}{97}-\frac{1}{101}\right)\)

\(=\frac{1}{4}\left(1-\frac{1}{101}\right)\)

\(=\frac{1}{4}.\frac{100}{101}=\frac{25}{101}\)

27 tháng 2 2017

cam on

28 tháng 2 2020

A=\(\frac{1}{1.300}+\frac{1}{2.301}+\frac{1}{3.302}+...+\frac{1}{101.400}\)

299.A= 299.(\(\frac{1}{1.300}+\frac{1}{2.301}+\frac{1}{3.302}+...+\frac{1}{101.400}\))

299.A=\(\frac{299}{1.300}+\frac{299}{2.301}+\frac{299}{3.302}+...+\frac{299}{101.400}=\frac{1}{1}-\frac{1}{300}+\frac{1}{2}-\frac{1}{301}+...+\frac{1}{101}-\frac{1}{400}\)

A= \(=\frac{1}{299}\left(1+\frac{1}{2}+...+\frac{1}{101}-\frac{1}{300}-\frac{1}{301}-...-\frac{1}{400}\right)\)

Tương tự 

B=\(\frac{1}{101}.\left(\frac{1}{1}-\frac{1}{102}+\frac{1}{2}-\frac{1}{103}+...+\frac{1}{299}-\frac{1}{400}\right)\)

B= \(\frac{1}{101}.\left(\frac{1}{1}+\frac{1}{2}...+\frac{1}{299}-\frac{1}{102}-\frac{1}{103}-...-\frac{1}{400}\right)\)

B= \(\frac{1}{101}.\left(\frac{1}{1}+\frac{1}{2}...+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{299}-\frac{1}{102}-\frac{1}{103}-...-\frac{1}{400}\right)\)

B= \(\frac{1}{101}.\left(\frac{1}{1}+\frac{1}{2}...+\frac{1}{101}-\frac{1}{300}-\frac{1}{301}-...-\frac{1}{400}\right)\)

Hai dấu ngoặc ở biểu thức A và biểu thức B như nhau

Vậy \(A:B=\frac{1}{299}:\frac{1}{101}=\frac{101}{299}\)

5 tháng 11 2016

A.  = 1/2-1/3+1/3-1/4+1/4-1/5...+1/101-1/102=1/2-1/102=25/51.

B.  =1/5-1/10+1/10-1/15+...+1/115-1/120=1/5-1/120=23/120.

C.  = 1/5-1/7+1/7-1/9+1/9-1/11+...+1/997-1/999=1/5-1/999=994/4995.

Minh kiem tra bang may tinh roi do.

5 tháng 11 2016

\(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{101\times102}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{101}-\frac{1}{102}+\frac{1}{102}\)

\(=1-\frac{1}{102}\)

\(=\frac{101}{102}\)

15 tháng 3 2015

SAI HẾT RỒI.........CẦN THÌ TỚ GIẢI LẠI CHO !!

15 tháng 3 2015

thế này :

\(\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{11.13}\right)\)

\(\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{11}-\frac{1}{13}\right)\)

\(\frac{1}{2}\left(\frac{1}{3}-\frac{1}{13}\right)\)

\(\frac{1}{2}.\frac{10}{39}\)

=  \(\frac{5}{39}\)

Vậy kq = \(\frac{5}{39}\)

25 tháng 1 2017

\(A=\frac{1}{10\times11}+\frac{1}{11\times12}+...+\frac{1}{99\times100}\)

\(A=\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=\frac{1}{10}-\frac{1}{100}\)

\(A=\frac{9}{100}\)

25 tháng 1 2017

\(A=\frac{1}{10.11}+\frac{1}{11.12}+...+\frac{1}{99.100}\)

\(=\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{10}-\frac{1}{100}\)

\(=\frac{9}{100}\)

5 tháng 10 2016

1/1 - 1/101 = 100/101

5 tháng 10 2016

bằng 100/101

28 tháng 8 2019

Dễ thấy 6,3 . 12 - 21 . 3,6 = 63 . 1,2 - 63 . 1,2 = 0

Do đó biểu thức trên bằng 0