TÌM GTLN,GTNN CỦA
A=\(2x^2-4xy+y^2+6x-10\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2\left(x^2-2\cdot\dfrac{3}{2}x+\dfrac{9}{4}\right)-\dfrac{9}{2}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\\ A_{min}=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{3}{2}\)
\(B=2x\left(x-4\right)-10=2x^2-8x-10\)
\(=2\left(x^2-4x+4\right)-18=2\left(x-2\right)^2-18\ge-18\)
\(minB=-18\Leftrightarrow x=2\)
Biểu thức này không có GTNN hay GTLN bạn nhé. Bạn xem lại đã viết biểu thức đúng chưa vậy?
\(A=x^2-4xy+4y^2+x^2+2x+1+2018\)
\(A=\left(x-2y\right)^2+\left(x+1\right)^2+2018\ge2018\)
\(A_{min}=2018\) khi \(\left\{{}\begin{matrix}x=-1\\y=-\frac{1}{2}\end{matrix}\right.\)
\(B=-\left(4x^2+4xy+y^2\right)-\left(x^2-6x+9\right)+2029\)
\(B=-\left(2x+y\right)^2-\left(x-3\right)^2+2029\le2029\)
\(B_{max}=2029\) khi \(\left\{{}\begin{matrix}x=3\\y=-6\end{matrix}\right.\)
1) (x-1)2 + (x- 4y)2 + (y + 2)2 +10 -1-4
GTNN = 5
2) tuong tu
\(A=-2x^2+6x-12\)
\(=-2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{15}{2}\)
\(=-2\left(x-\dfrac{3}{2}\right)^2-\dfrac{15}{2}\le-\dfrac{15}{2}\)
\(maxA=-\dfrac{15}{2}\Leftrightarrow x=\dfrac{3}{2}\)
Ta có: \(A=-2x^2+6x-12\)
\(=-2\left(x^2-3x+6\right)\)
\(=-2\left(x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{15}{4}\right)\)
\(=-2\left(x-\dfrac{3}{2}\right)^2-\dfrac{15}{2}\le-\dfrac{15}{2}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{3}{2}\)
Biểu thức này không có min và cũng không có max