Cho a>b>2 và a,b thuộc N
CMR: a/b+b/a> hoặc = 2
giải giúp mik tối mik đi hok
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\)Áp dụng BĐT Cô-sita có:\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\left(đpcm\right)\)
Đây là 1 tính chất rất quan trọng.
Ta cần CM: \(\frac{c}{d}>\frac{a+c}{b+d}\)
<=> \(\frac{c}{d}-\frac{a+c}{b+d}>0\)
<=> \(\frac{bc+cd-ad-cd}{d\left(b+d\right)}>0\)
<=> \(\frac{bc-ad}{d\left(b+d\right)}>0\)(*)
Đoán đề bài thiếu, PHẢI LÀ: Cho a, b, c, d > 0 và \(\frac{a}{b}< \frac{c}{d}\)
THÌ NGAY LÚC ĐÓ BĐT (*) SẼ LUÔN ĐÚNG
=> ĐPCM
Sử dụng Bất đẳng thức cô si:
Ta có: \(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}\)
\(\Leftrightarrow\frac{a}{b}+\frac{b}{a}\ge2\)
Sử dụng hằng đẳng thức:
\(\frac{a}{b}+\frac{b}{a}=\frac{a^2+b^2}{ab}=\frac{a^2-2ab+b^2}{ab}+2\)\(=\frac{\left(a-b\right)^2}{ab}+2\)
Vì \(\frac{\left(a-b\right)^2}{ab}\ge0\)\(\Rightarrow\frac{\left(a-b\right)^2}{ab}+2\ge2\)
Hay \(\frac{a}{b}+\frac{b}{a}\ge2\)