tìm x biết
4/x-5/+2/3x-4/=0
chiều mai nộp rồi
hu hu
giúp mik vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-2,5 + |3x + 5| = -1,5
|3x + 5| = -1,5 + 2,5
|3x + 5| = 1
Với x -5/3 ta có:
3x + 5 = 1
3x = 1 - 5
3x = -4
x = -4/3 (nhận)
Với x < -5/3 ta có:
3x + 5 = -1
3x = -1 - 5
3x = -6
x = -6/3
x = -2 (nhận)
Vậy x = -2; x = -4/3
(3\(x\) - 2)(\(x+4\)) - (1- \(x\))(2-\(x\)) =(\(x+1\))(\(x-2\))
3\(x^2\) + 12\(x\) - 2\(x\) - 8 - (\(x+1\))(\(x-2\)) - [-(\(x-2\))](1- \(x\)) = 0
3\(x^2\) + 10\(x\) - 8 - (\(x-2\))( \(x\) + 1 - 1 + \(x\)) = 0
3\(x^2\) + 10\(x\) - 8 - (\(x-2\)). 2\(x\) = 0
3\(x^2\) + 10\(x\) - 8 - 2\(x^2\) + 4\(x\) = 0
\(x^2\) + 14\(x\) - 8 = 0
\(x^2\) + 7\(x\) + 7\(x\) + 49 - 57 = 0
\(x\)( \(x\) + 7) + 7(\(x\) + 7) = 57
(\(x+7\))(\(x\) + 7) =57
(\(x+7\))2 = 57
\(\left[{}\begin{matrix}x+7=\sqrt{57}\\x+7=-\sqrt{57}\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-7+\sqrt{57}\\x=-7-\sqrt{57}\end{matrix}\right.\)
Vậy \(x\) \(\in\) { -7 - \(\sqrt{57}\); - 7 + \(\sqrt{57}\)}
Bài 1:
a) \(x^2-6x+15=\left(x^2-6x+9\right)+6=\left(x-3\right)^2+6\ge6\)
Dấu "=" xảy ra \(\Leftrightarrow x=3\)
b) \(3x^2-15x+4=3\left(x^2-5x+\dfrac{25}{4}\right)-\dfrac{59}{4}=3\left(x-\dfrac{5}{2}\right)^2-\dfrac{59}{4}\ge-\dfrac{59}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{5}{2}\)
Bài 2:
a) \(\Rightarrow\left(x-5\right)\left(x+5\right)+2\left(x+5\right)=0\)
\(\Rightarrow\left(x+5\right)\left(x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-5\\x=3\end{matrix}\right.\)
c) \(\Rightarrow x^2\left(x-2\right)+7\left(x-2\right)=0\)
\(\Rightarrow\left(x-2\right)\left(x^2+7\right)=0\)
\(\Rightarrow x=2\left(do.x^2+7\ge7>0\right)\)
a) Ta có : |2x - 5| = x + 1
\(\Leftrightarrow\orbr{\begin{cases}2x-5=-x-1\\2x-5=x+1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x+x=-1+5\\2x-x=1+5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x=4\\x=6\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{4}{3}\\x=6\end{cases}}\)
a)\(x+\frac{1}{3}=\frac{3}{4}\)
\(\Rightarrow x=\frac{3}{4}-\frac{1}{3}\)
\(\Rightarrow x=\frac{5}{12}\)
b)\(x-\frac{2}{5}=\frac{5}{7}\)
\(\Rightarrow x=\frac{5}{7}+\frac{2}{5}\)
\(\Rightarrow x=1\frac{4}{35}\)
c)\(-x-\frac{2}{3}=-\frac{6}{7}\)
\(\Rightarrow-x=-\frac{6}{7}+\frac{2}{3}\)
\(\Rightarrow-x=-\frac{4}{21}\)
\(\Rightarrow x=\frac{4}{21}\)
d)\(\frac{4}{7}-x=\frac{1}{3}\)
\(x=\frac{4}{7}-\frac{1}{3}\)
\(\Rightarrow x=\frac{5}{21}\)
10 + 2 ( x - 9 ) = \(4^{16}\) : \(4^{14}\)
10 + 2 ( x - 9) = \(4^2\)
10 + 2 ( x - 9) = 16
2 ( x - 9) = 16 - 10
2 ( x - 9) = 6
x - 9 = 6 : 2
x - 9 = 3
x = 3 + 9
x = 12
\(10+2\left(x-9\right)=4^{16}:4^{12}\)
\(10+2\left(x-9\right)=4^2\)
\(10+2\left(x-9\right)=16\)
\(2\left(x-9\right)=16-10\)
\(2\left(x-9\right)=6\)
\(x-9=6:2\)
\(x-9=3\)
\(x=9+3\)
\(\Rightarrow x=12\)
Bài 1 :
a, \(\frac{3}{4}:x=\frac{5}{12}\)
\(x=\frac{3}{4}:\frac{5}{12}\)
\(x=\frac{9}{5}\)
b, \(x-\frac{1}{2}=\frac{3}{4}:\frac{3}{2}\)
\(x-\frac{1}{2}=\frac{1}{2}\)
\(x=\frac{1}{2}+\frac{1}{2}\)
\(x=1\)
c, \(1\frac{1}{2}x-\frac{1}{2}=\frac{3}{4}\)
\(\frac{3}{2}x-\frac{1}{2}=\frac{3}{4}\)
\(\frac{3}{2}x=\frac{3}{4}+\frac{1}{2}\)
\(\frac{3}{2}x=\frac{5}{4}\)
\(x=\frac{5}{4}:\frac{3}{2}\)
\(x=\frac{5}{6}\)
Bài 2 :
\(A=\frac{-3}{5}+\left(\frac{-2}{5}-99\right)\)
\(A=\frac{-3}{5}+\frac{-2}{5}-99\)
\(A=\left(-1\right)-99\)
\(A=-100\)
\(B=\left(7\frac{2}{3}+2\frac{3}{5}\right)-6\frac{2}{3}\)
\(B=\left(\frac{23}{3}+\frac{13}{5}\right)-\frac{20}{3}\)
\(B=\frac{23}{3}+\frac{13}{5}-\frac{20}{3}\)
\(B=\left(\frac{23}{3}-\frac{20}{3}\right)+\frac{13}{5}\)
\(B=1+\frac{13}{5}\)
\(B=\frac{18}{5}\)
\(11-\left(3x-1\right)=\frac{9}{2}-\left(5-3,5x\right)\)
\(=>11-3x+1=\frac{9}{2}-5+3,5x\)
\(=>-3x+12=3,5x-\frac{1}{2}\)
\(=>-3x-3,5x=-\frac{1}{2}-12\)
\(=>-6,5x=-12,5\)
\(=>x=\frac{-12,5}{-6,5}=\frac{25}{13}\)
Ủng hộ nha
\(11-\left(3x-1\right)=\frac{9}{2}-\left(5-3,5x\right)\)
\(11-3x+1=\frac{9}{2}-5+3,5x\)
\(12-3x=-\left(0,5\right)+3,5x\)
\(12,5-3x=3,5x\)
\(12,5=6,5x\)
\(x=12,5:6,5=\frac{25}{13}\)
bạn ơi dấu giá trị tuyệt đối// à