Tính :
√ 5a . √ 45ab2 (a>o , b>0)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT AM-GM ta có:
\(A=5a+6b+7c+\frac{1}{a}+\frac{8}{b}+\frac{27}{c}\)
\(=4\left(a+b+c\right)+\left(\frac{1}{a}+a\right)+\left(\frac{8}{b}+2b\right)+\left(\frac{27}{c}+3c\right)\)
\(\ge4\cdot6+2\sqrt{\frac{1}{a}\cdot a}+2\sqrt{\frac{8}{b}\cdot2b}+2\sqrt{\frac{27}{c}\cdot3c}\)
\(\ge24+2+2\cdot4+2\cdot9=52\)
Xảy ra khi \(\frac{1}{a}=a;\frac{8}{b}=2b;\frac{27}{c}=3c\Rightarrow a=1;b=2;c=3\)
a, ( a + 3 ) . ( 7 - a ) > 0
TH1 => a + 3 > 0 và 7 - a > 0
= > a > -3 và a < 7
= > -3 < a < 7
TH2 = > a + 3 < 0 và 7 - a < 0
= > a < -3 và a > 7
= > 7 < a < -3 ( vô lí )
Vậy -3 < a < 7
Câu b , c làm tương tự câu a
d, ( 3a - 7 ) . ( 5a + 8 ) < 0
Do 3a - 7 < 5a + 8
= > 3a -7 < 0 và 5a + 8 > 0
= > a < \(\dfrac{7}{3}\) và a > \(\dfrac{-8}{5}\)
Vậy \(\dfrac{-8}{5}< a< \dfrac{7}{3}\)
Từ \(a^2+ab-6b^2=0\Rightarrow\left(a^2+3ab\right)-\left(2ab+6b^2\right)=0\)
\(\Leftrightarrow a\left(a+3b\right)-2b\left(a+3b\right)=0\Leftrightarrow\left(a+3b\right)\left(a-2b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=-3b\\a=2b\end{cases}}\)
Với \(a=-3b\Rightarrow S=\frac{-3b+3b}{5.\left(-3b\right)+b}=\frac{0}{-14b}=0\)
Với \(a=2b\Rightarrow S=\frac{2b+3b}{5.2b+b}=\frac{5b}{11b}=\frac{5}{11}\)
b4
tìm các số nguyên a sao cho
a, (a+3).(7-a)>0
c,(2a+1).(5-2a)>0
b,(2a+4).(3-a)>0
d,(3a-7).(5a+8)<0
a: (a+3)(7-a)>0
=>(a+3)(a-7)<0
=>-3<a<7
mà a là số nguyên
nên \(a\in\left\{-2;-1;0;1;...;6\right\}\)
b: (2a+4)(3-a)>0
=>(a-3)(a+2)<0
=>-2<a<3
mà a là số nguyên
nên \(a\in\left\{-1;0;1;2\right\}\)
c: (2a+1)(5-2a)>0
=>(2a+1)(2a-5)<0
=>-1/2<a<5/2
mà a là số nguyên
nên \(a\in\left\{0;1;2\right\}\)
d: (3a-7)(5a+8)<0
=>5a+8>0 và 3a-7<0
=>-8/5<a<7/3
mà a là số nguyên
nên \(a\in\left\{-1;0;1;2\right\}\)
Tìm trước khi hỏi :
Đề vòng 1 chuyên sư phạm 2016-2017 - Tài liệu - Đề thi - Diễn đàn Toán học
Witch Rose
Vì a,b,ca,b,c không âm và a+b+c=1a+b+c=1 nên 2≤t=√5c+4≤32≤t=5c+4≤3
Ta có:a,b≥0⇒25ab+20(a+b)+16≥20(a+b)+16a,b≥0⇒25ab+20(a+b)+16≥20(a+b)+16
⇔(5a+4)(5b+4)≥4(5a+5b+4)⇔(5a+4)(5b+4)≥4(5a+5b+4)
⇔(√5a+4+√5b+4)2≥(2+√5a+5b+4)2⇔(5a+4+5b+4)2≥(2+5a+5b+4)2
⇔√5a+4+√5b+4≥2+√9−5c=2+√13
\(5a^2+10b^2-6ab-4a+2b+3\)
\(=\left(a^2-6ab+9b^2\right)+\left(4a^2-4a+1\right)+\left(b^2+2b+1\right)+1\)
\(=\left(a-3b\right)^2+\left(2a-1\right)^2+\left(b+1\right)^2+1>0\left(đpcm\right)\)
Với a>0 , b>0 ta có: \(\sqrt{5a}.\sqrt{45ab^2}=\sqrt{5a.45ab^2}=\sqrt{225a^2b^2}=15.|a|.|b|=15ab\)