CTR [2n+1].[2n+2] \(⋮\)3 với mọi n là STN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của ☪Ņĥøķ Ņģøç☪ - Toán lớp 6 - Học toán với OnlineMath
Ta có n^2(n+1)+2n(n+1) = n^3+3n^2+2n = n(n^2+3n+2) = n(n+1)(n+2)
Ta thấy n, n+1, n+2 là ba số nguyên liên tiếp với n nguyên
=> trong 3 số n, n+1, n+2 có một số chia hết cho 3, có ít nhất một số chia hết cho 2
=> n(n+1)(n+2) chia hết cho 2*3 = 6 (vì ƯCLN(2;3)=1)
Vậy ta được điều phải chứng minh
Có đúng không thì cũng ủng hộ nha
gọi d là ước chung lớn nhất của 2n+1 và 2n+3
vì 2n+1 và 2n+3 là 2 số lẻ => d lẻ
ta có \(\hept{\begin{cases}2n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\left(2n+3\right)-\left(2n+1\right)⋮d\Rightarrow2⋮d\Rightarrow d\inƯ\left(2\right)=\left\{1,2\right\}}\)
mà d lẻ => d=1
=> 2n+1 và 2n+3 là 2 số nguyên tố cùng nhau (ĐPCM)
Gọi d là ƯCLN của 2n + 4 và 14n + 3
<=> 2n + 4 chia hết cho d , 14n + 3 chia hết cho d
<=> 14n + 28 chia hết cho d , 14n + 3 chia hết cho d
=> 14n + 28 - 14n + 3 chia hết cho d
=> 25 chia hết cho d
Có vấn đề sai sai yk bạn
Không sai đâu. Cô giáo lớp mình nói là phải chứng minh d=1 mà.
Bài 1: Theo đề, ta có : a : 18 ( dư 12 ) ( a \(\in N\) )
\(\Rightarrow\) a : 2.9 ( dư 3+9 )
\(\Rightarrow\) a : 9 ( dư 3 )
Bài 2 : Theo đề, ta có : B = 6 + m + n + 12
B = ( m + n ) + ( 6 + 12 )
B = ( m + n ) + 18
Vì \(18⋮3\) nên khi ( m + n ) \(⋮\) 3 thì B \(⋮3\)
Ngược lại, khi ( m + n ) \(⋮̸\) 3 thì B \(⋮̸\) 3.
Bài 3:
Ta có : A = \(2+2^2+2^3+...+2^{49}+2^{50}\)
A = \(\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{49}+2^{50}\right)\)
A = \(2\left(1+2\right)+2^3\left(1+2\right)+...+2^{49}\left(1+2\right)\)
A = \(2.3+2^3.3+...+2^{49}.3\)
A = \(3\left(2+2^3+...+2^{49}\right)\) \(⋮\) 3
Ta có : A = \(2+2^2+2^3+2^4+2^5+...+2^{49}+2^{50}\)
A = \(\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{46}+2^{47}+2^{48}+2^{49}+2^{50}\right)\)
A = \(2\left(1+2+2^2+2^3+2^4\right)+...+2^{46}\left(1+2+2^2+2^3+2^4\right)\)
A = 2 . 62 + ... + \(2^{46}.62\)
A = 62 ( 2 +...+ \(2^{46}\) )
A = 31 . 2( \(2+...+2^{46}\) ) \(⋮\) 31
Bài 4: Ta có : \(\overline{abcabc}\) = \(\overline{abc}000+\overline{abc}\) = \(\overline{abc}\left(1000+1\right)\) = \(\overline{abc}.1001\) = \(\overline{abc}.77.13\) \(⋮13\)
Vậy : \(\overline{abcabc}⋮13\)
Để mk làm bài 5 sau nha. Bây giờ đang bận
Bài 5:
a/ Ta có: \(n+5\) \(⋮\) n - 2 ( n \(\in\) N )
\(\Rightarrow\) n - 2 +7 \(⋮\) n - 2
\(\Rightarrow\) 7 \(⋮\) n - 2
\(\Rightarrow\) n - 2 \(\in\) Ư(7) = { 1 ; 7 }
\(\Rightarrow n\in\left\{3;9\right\}\)
b/ Ta có : 2n + 7 \(⋮\) n + 1 ( n \(\in\) N )
\(\Rightarrow\) 2( n + 1 ) + 5 \(⋮\) n + 1
\(\Rightarrow\) 5 \(⋮\) n + 1
\(\Rightarrow\) n + 1 \(\in\) Ư (5) = { 1 ; 5 }
\(\Rightarrow\) n \(\in\) { 0 ; 4 }
Chúc bn hc tốt!!!
ta có: \(\frac{n^4+2n^3+3n^2+2n}{4}=\frac{n^4+n^3+n^3+n^2+2n^2+2n}{4}=\frac{n^3\left(n+1\right)+n^2\left(n+1\right)+2n\left(n+1\right)}{4}\)
\(=\frac{\left(n^3+n^2+2n\right)\left(n+1\right)}{4}=\frac{n\left(n+1\right)\left(n^2+n+2\right)}{4}\)
đến chỗ này mà là tích của 2 số tự nhiên liên tiếp thì hơi lạ !