K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2020

Câu hỏi của ☪Ņĥøķ Ņģøç☪ - Toán lớp 6 - Học toán với OnlineMath

 Ta có n^2(n+1)+2n(n+1) = n^3+3n^2+2n = n(n^2+3n+2) = n(n+1)(n+2) 
Ta thấy n, n+1, n+2 là ba số nguyên liên tiếp với n nguyên 
=> trong 3 số n, n+1, n+2 có một số chia hết cho 3, có ít nhất một số chia hết cho 2 
=> n(n+1)(n+2) chia hết cho 2*3 = 6 (vì ƯCLN(2;3)=1) 
Vậy ta được điều phải chứng minh

Có đúng không thì cũng ủng hộ nha

22 tháng 3 2016

Đúng tôi làm rồi

15 tháng 9 2017

gọi d là ước chung lớn nhất của 2n+1 và 2n+3

vì 2n+1 và 2n+3 là 2 số lẻ => d lẻ 

ta có \(\hept{\begin{cases}2n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\left(2n+3\right)-\left(2n+1\right)⋮d\Rightarrow2⋮d\Rightarrow d\inƯ\left(2\right)=\left\{1,2\right\}}\)

mà d lẻ => d=1 

=> 2n+1 và 2n+3 là 2 số nguyên tố cùng nhau (ĐPCM)

15 tháng 9 2017

Gọi d là ƯCLN(2n+1,2n+3)

Ta có: 2n+1 chia hết cho d

           2n+3 chia hết cho d

=> 2n+1-(2n+3) chia hết cho d

=>-2 chia hết cho d

=> d thuộc {-1;1;-2;2}

Mà 2n+1,2n+3 là số lẻ =>d thuộc {1;-1}

Vậy... 

22 tháng 2 2017

Gọi d là ƯCLN của 2n + 4 và 14n + 3

<=> 2n + 4 chia hết cho d , 14n + 3 chia hết cho d

<=> 14n + 28 chia hết cho d ,  14n + 3 chia hết cho d

=> 14n + 28 - 14n + 3 chia hết cho d 

=> 25 chia hết cho d

Có vấn đề sai sai yk bạn

22 tháng 2 2017

Không sai đâu. Cô giáo lớp mình nói là phải chứng minh d=1 mà.

1 tháng 7 2018

Bài 1: Theo đề, ta có : a : 18 ( dư 12 ) ( a \(\in N\) )

\(\Rightarrow\) a : 2.9 ( dư 3+9 )

\(\Rightarrow\) a : 9 ( dư 3 )

Bài 2 : Theo đề, ta có : B = 6 + m + n + 12

B = ( m + n ) + ( 6 + 12 )

B = ( m + n ) + 18

\(18⋮3\) nên khi ( m + n ) \(⋮\) 3 thì B \(⋮3\)

Ngược lại, khi ( m + n ) \(⋮̸\) 3 thì B \(⋮̸\) 3.

Bài 3:

Ta có : A = \(2+2^2+2^3+...+2^{49}+2^{50}\)

A = \(\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{49}+2^{50}\right)\)

A = \(2\left(1+2\right)+2^3\left(1+2\right)+...+2^{49}\left(1+2\right)\)

A = \(2.3+2^3.3+...+2^{49}.3\)

A = \(3\left(2+2^3+...+2^{49}\right)\) \(⋮\) 3

Ta có : A = \(2+2^2+2^3+2^4+2^5+...+2^{49}+2^{50}\)

A = \(\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{46}+2^{47}+2^{48}+2^{49}+2^{50}\right)\)

A = \(2\left(1+2+2^2+2^3+2^4\right)+...+2^{46}\left(1+2+2^2+2^3+2^4\right)\)

A = 2 . 62 + ... + \(2^{46}.62\)

A = 62 ( 2 +...+ \(2^{46}\) )

A = 31 . 2( \(2+...+2^{46}\) ) \(⋮\) 31

Bài 4: Ta có : \(\overline{abcabc}\) = \(\overline{abc}000+\overline{abc}\) = \(\overline{abc}\left(1000+1\right)\) = \(\overline{abc}.1001\) = \(\overline{abc}.77.13\) \(⋮13\)

Vậy : \(\overline{abcabc}⋮13\)

Để mk làm bài 5 sau nha. Bây giờ đang bận

1 tháng 7 2018

Bài 5:

a/ Ta có: \(n+5\) \(⋮\) n - 2 ( n \(\in\) N )

\(\Rightarrow\) n - 2 +7 \(⋮\) n - 2

\(\Rightarrow\) 7 \(⋮\) n - 2

\(\Rightarrow\) n - 2 \(\in\) Ư(7) = { 1 ; 7 }

\(\Rightarrow n\in\left\{3;9\right\}\)

b/ Ta có : 2n + 7 \(⋮\) n + 1 ( n \(\in\) N )

\(\Rightarrow\) 2( n + 1 ) + 5 \(⋮\) n + 1

\(\Rightarrow\) 5 \(⋮\) n + 1

\(\Rightarrow\) n + 1 \(\in\) Ư (5) = { 1 ; 5 }

\(\Rightarrow\) n \(\in\) { 0 ; 4 }

Chúc bn hc tốt!!!hahahahahaha

28 tháng 6 2018

ta có: \(\frac{n^4+2n^3+3n^2+2n}{4}=\frac{n^4+n^3+n^3+n^2+2n^2+2n}{4}=\frac{n^3\left(n+1\right)+n^2\left(n+1\right)+2n\left(n+1\right)}{4}\)

                                                      \(=\frac{\left(n^3+n^2+2n\right)\left(n+1\right)}{4}=\frac{n\left(n+1\right)\left(n^2+n+2\right)}{4}\)

đến chỗ này mà là tích của 2 số tự nhiên liên tiếp thì hơi lạ !