K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2019

a,\(f\left(x\right)=0\)khi \(x=\orbr{\begin{cases}-1\\5\end{cases}}\),

b\(f\left(x\right)>0\)khi \(x>0\)

c\(f\left(x\right)< 0\)khi\(-5< x< -1\)

a, f(x)=\(x^2+4x-5=0\)

\(\Rightarrow x^2+4x^{ }=5\)

\(x.\left(x+4\right)=5\)

x+4=5 suy ra x=1

7 tháng 8 2019

a) f(x) = x(x - 5) + 2(x - 5)

x(x - 5) + 2(x - 5) = 0

<=> (x - 5)(x - 2) = 0

        x - 5 = 0 hoặc x - 2 = 0

        x = 0 + 5         x = 0 + 2

        x = 5               x = 2

=> x = 5 hoặc x = 2

a,   f(x) có nghiệm 

\(\Leftrightarrow x\left(x-5\right)+2\left(x-5\right)=0\)

\(\Rightarrow\left(x-5\right)\left(x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-5=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\\x=-2\end{cases}}\)

->tự kết luận.

b1, để g(x) có nghiệm thì:

\(g\left(x\right)=2x\left(x-2\right)-x^2+5+4x=0\)

\(\Rightarrow2x^2-4x-x^2+5+4x=0\)

\(\Rightarrow x^2+5=0\)

Do \(x^2\ge0\forall x\)nên\(x^2+5\ge5\forall x\)

suy ra: k tồn tại \(x^2+5=0\)

Vậy:.....

b2, 

\(f\left(x\right)=x\left(x-5\right)+2\left(x-5\right)\)

\(=x^2-5x+2x-10\)

\(=x^2-3x-10\)

\(f\left(x\right)-g\left(x\right)=x^2+5-\left(x^2-3x-10\right)\)

\(=x^2+5-x^2+3x-10=3x-5\)

6 tháng 5 2020

Khi f( x) : ( x - 2 ) ( x - 3) thì còn đa thức dư vì ( x - 2 ) ( x - 3 ) có bậc cao nhất là 2 

=> đa thức dư có bậc cao nhất là 1 

=> G/s: đa thức dư là: r(x) = a x + b 

Ta có: f ( x ) = ( x - 2 )( x - 3 ) ( x^2 + 1 ) + ax + b 

Vì f ( x ) chia ( x - 2 ) dư 2016 

=> f ( 2 ) = 2016   => a.2 + b = 2016 (1) 

Vì f(x ) chia ( x - 3 ) dư 2017 

=> f ( 3) = 2017 => a.3 + b  = 2017 (2) 

Từ (1) ; (2) => a = 1; b = 2014 

=> Đa thức f(x) = ( x - 2 )( x - 3 ) ( x^2 + 1 ) + x + 2014

và đa thức dư là: x + 2014

24 tháng 12 2021

\(\Leftrightarrow1-m=0\)

hay m=1

28 tháng 10 2020

600000000<1

28 tháng 10 2020

Cho mình xin cách làm đi

19 tháng 12 2021

=>x^2=x

=>x=0 hoặc x=1

Để f(x)=g(x) thì \(\left\{{}\begin{matrix}a+b=5\\ab=6\end{matrix}\right.\Leftrightarrow\left(a,b\right)\in\left\{\left(2;3\right);\left(3;2\right)\right\}\)

5 tháng 3 2022

Để f(x)=g(x) thì {a+b=5ab=6⇔(a,b)∈{(2;3);(3;2)}.

 

13 tháng 12 2021

a. x3+x2+2x2+2x

= (x3+x2)+(2x2+2x)

= x2(x+1)+2x(x+1)

= (x2+2x)(x+1)

= x(x+2)(x+1)