Cho biết A=\(\frac{1010^{1010}}{2010^{2010}}\)và B=\(\frac{2010^{2010}}{3010^{3010}}\).Hãy so sánh A và B
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bổ sung đề: So sánh A và B
Ta có:
A. \(2010^{1000}=\frac{1010^{1010}.2010^{1000}}{2010^{2010}}=\left(\frac{101}{201}\right)^{1010}\)
B. \(2010^{1000}=\frac{2010^{2010}.2010^{1000}}{3010^{3010}}=\left(\frac{201}{301}\right)^{3010}\)
Từ \(\frac{101}{201}>\frac{1}{2}>\frac{40401}{90601}=\left(\frac{201}{301}\right)^2\)và \(\frac{201}{301}< 1\)
có: \(\left(\frac{101}{201}\right)^{1010}>\left(\frac{201}{301}\right)^{2.1010}=\left(\frac{201}{301}\right)^{2020}>\left(\frac{201}{301}\right)^{3010}\)
Suy ra \(A=\left(\frac{101}{201}\right)^{1010}.\frac{1}{2010^{1000}}>\left(\frac{201}{301}\right)^{3010}.\frac{1}{2010^{1000}}\) hay A > B
Ta có: \(3^{2010}=3^{10}\cdot3^{2000}=3^{10}\cdot9^{1000}\)
\(2^{3010}=2^{10}\cdot2^{3000}=2^{10}\cdot8^{1000}\)
Xét thấy \(3^{10}>2^{10};9^{1000}>8^{1000}\)
\(\Rightarrow3^{10}\cdot9^{1000}>2^{10}\cdot8^{1000}\)
Vậy \(3^{2010}>2^{3010}\)
Bạn nguyen quang huy sai rồi!!!
Vì 1000/2009>1000/2009+2010 (1)
1010/2010>1010/2009+2010 (2)
Ta cộng theo vế (1) và (2) với nhau nên ta được:
1000/2009+1010/2010>1000/2009+2010 +1010/2009+2010
=>1000/2009+1010/2010>1000+1010/2009+2010
Vậy A<B
Chắc chắn 100% luôn, không sai đâu!!!!!!!
Bài giải
Theo bài ra :
\(A=\frac{2009}{2010}+\frac{2010}{2011}+\frac{2011}{2012}\)
\(B=\frac{2009+2010+2011}{2010+2011+2012}=\frac{2009}{2010+2011+2012}+\frac{2010}{2010+2011+2012}+\frac{2011}{2010+2011+2012}\)
Ta có :
\(\frac{2009}{2010}>\frac{2009}{2010+2011+2012}\)
\(\frac{2010}{2011}>\frac{2010}{2010+2011+2012}\)
\(\frac{2011}{2012}>\frac{2011}{2010+2011+2012}\)
\(\Rightarrow\text{ }\frac{2009}{2010}+\frac{2010}{2011}+\frac{2011}{2012}>\frac{2009}{2010+2011+2012}+\frac{2010}{2010+2011+2012}+\frac{2011}{2010+2011+2012}\)
\(\Rightarrow\text{ }A>B\)
\(1-A=1-\frac{2010^{2011}+1}{2010^{2012}+1}=\frac{2010^{2012}+1}{2010^{2012}+1}-\frac{2010^{2011}+1}{2010^{2012}+1}\)=\(\frac{2010}{2010^{2012}+1}\)
\(1-A=1-\frac{2010^{2011}+1}{2010^{2012}+1}=\frac{2010^{2012}+1}{2010^{2012}+1}-\frac{2010^{2011}+1}{2010^{2012}+1}=\frac{2010}{2010^{2012}+1}\)
\(1-B=1-\frac{2010^{2010}+1}{2010^{2011}+1}=\frac{2010^{2011}+1}{2010^{2011}+1}-\frac{2010^{2010}+1}{2010^{2011}+1}=\frac{2010}{2010^{2011}+1}\)
\(\frac{2010}{2010^{2012}+1}<\frac{2010}{2010^{2011}+1}\Rightarrow A>B\)
\(1-A=1-\frac{2010^{2011}+1}{2010^{2012}+1}=\frac{2010^{2012}+1}{2010^{2012}+1}-\frac{2010^{2011}+1}{2010^{2012}+1}=\frac{2010}{2010^{2012}+1}\)
\(1-B=1-\frac{2010^{2010}+1}{2010^{2011}+1}=\frac{2010^{2011}+1}{2010^{2011}+1}-\frac{2010^{2010}+1}{2010^{2011}+1}=\frac{2010}{2010^{2011}+1}\)
Do \(\frac{2010}{2010^{2012}+1}B\)
Do 20102011+1<20102012+1=>A<1
Tương tự với B;B<1
Theo đề bài ta có:
\(A=\frac{2010^{2011}+1}{2010^{2012}+1}
\(B=\frac{2008+2009+2010}{2009+2010+2011}\)
\(=\frac{2008}{2009+2010+2011}+\frac{2009}{2009+2010+2011}+\frac{2010}{2009+2010+2011}\)
\(< \frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}=A\)
A=\(\frac{-199}{10^{2011}}\)
B=\(\frac{-109}{10^{2011}}\)
Dễ dàng so sánh được A<B