CMR : A = 1 phần 32 + 1 phần 42 + 1 phần 52 + ... + 1 phần 502 > 1 phần 4
Giúp mk nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) = ( 9/10 - 4/5) + ( 3/4 + 1/2)
= ( 9/10 - 8/10) + ( 3/4 + 2/4)
= 1/10 + 5/4
= 2/20 + 25/20 = 27/20
b) = (4/5 + 4/15) + (5/6 - 1/2)
= (12/15 - 4/15) + (5/6 - 3/6)
= 8/15 + 2/6
= 16/30 + 10/30
= 26/30 = 13/15
c) = 55 - 39 - 1 + 60 /75 = 75/75 = 1
d) = 47 + 35 - 36 + 15/42 = 61/42
Ta có :
\(\frac{1}{51}\)> \(\frac{1}{100}\)
\(\frac{1}{52}\)> \(\frac{1}{100}\)
...
\(\frac{1}{99}\)> \(\frac{1}{100}\)
\(\frac{1}{100}\)= \(\frac{1}{100}\)
=> S > 50 x \(\frac{1}{100}\)
=> S > \(\frac{50}{100}\)= \(\frac{1}{2}\)
Vậy S > \(\frac{1}{2}\)
\(S=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)
Ta có \(\frac{1}{51}>\frac{1}{100}\)
\(\frac{1}{52}>\frac{1}{100}\)
...
\(\frac{1}{99}>\frac{1}{100}\)
\(\Rightarrow\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{99}+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\)
( có 50 phân số)
\(\Rightarrow S>50.\frac{1}{100}\)
\(\Rightarrow S>\frac{1}{2}\)
Vậy...
1)
A = \(\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+...+\frac{1}{132}\)
= \(\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{11.12}\)
= \(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{11}-\frac{1}{12}\)
= \(\frac{1}{5}-\frac{1}{12}\)
= \(\frac{7}{60}\)
B = \(\left(1+\frac{1}{2}\right).\left(1+\frac{1}{3}\right).\left(1+\frac{1}{4}\right).....\left(1+\frac{1}{99}\right)\)
= \(\frac{3}{2}.\frac{4}{3}.\frac{5}{4}.....\frac{100}{99}\)
= \(\frac{3.4.5.....100}{2.3.4....99}\)
= \(\frac{100}{2}=50\)
C = \(\frac{1}{4^{2-1}}+\frac{1}{6^{2-1}}+\frac{1}{8^{2-1}}...+\frac{1}{30^{2-1}}\)
= \(\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+...+\frac{1}{30}\)
= \(\frac{1}{2.2}+\frac{1}{2.3}+\frac{1}{2.4}+...+\frac{1}{2.15}\)
= \(\frac{1}{2}.\frac{1}{2}+\frac{1}{2}.\frac{1}{3}+\frac{1}{2}.\frac{1}{4}+...+\frac{1}{2}.\frac{1}{15}\)
= \(\frac{1}{2}.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{15}\right)\)
\(A=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)
\(A=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}\)
\(A=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}\)
\(A=\frac{1}{5}+\left(\frac{1}{6}-\frac{1}{6}\right)+\left(\frac{1}{7}-\frac{1}{7}\right)+\left(\frac{1}{8}-\frac{1}{8}\right)+\left(\frac{1}{9}-\frac{1}{9}\right)+\left(\frac{1}{10}-\frac{1}{10}\right)+\left(\frac{1}{11}-\frac{1}{11}\right)-\frac{1}{12}\)
\(A=\frac{1}{5}-\frac{1}{12}=\frac{7}{60}\)
~ Hok tốt ~
Ta có:
\(A=\left(\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{40}\right)+\left(\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{50}\right)+\left(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{60}\right)\)
\(A>\dfrac{1}{40}.10+\dfrac{1}{50}.10+\dfrac{1}{60}.10=\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}=\dfrac{37}{60}>\dfrac{3}{5}\)
Vậy \(A>\dfrac{3}{5}\)
Ta có:
\(A=\left(\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{40}\right)+\left(\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{50}\right)+\left(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{60}\right)\)\(A< \dfrac{1}{31}.10+\dfrac{1}{41}.10+\dfrac{1}{51}.10< \dfrac{4}{5}\)
Vậy \(A< \dfrac{4}{5}\)
Do đó: \(\dfrac{3}{5}< A< \dfrac{4}{5}\)
Nhớ tick cho mk nhé(hehe