tìm nghiệm nguyên dương của phương trình
x2 -y2 +2x- 4y -10 =0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-y^2+2x-4y-10=0\)
\(\Leftrightarrow x^2+2x+1-\left(y^2+y+9\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2-\left(y+2\right)^2-5=0\)
\(\Leftrightarrow\left(x+1\right)^2-\left(y+1\right)^2=5\)
\(\Leftrightarrow\left(x+1+y+2\right)\left(x+1+y-2\right)=5\)
\(\Leftrightarrow\left(x+y+1+2\right)\left(x-y-2-1\right)=5\)
\(\Leftrightarrow\left(x+y+3\right)\left(x-y-1\right)=5\)
Ta có bảng GT:
x+y+3 | 1 | 5 | -1 | -5 |
x-y-1 | 5 | 1 | -5 | -1 |
x | 2 | 2 | -4 | -4 |
y | -4 | 0 | 0 | -4 |
Vậy (x,y)= (2;4) (2;0) (4;0);(-4;4)
x,y nguyên dương là:
=> Nghiệm của nguyên dương PT là: (x,y)=(2,0)
+ 2x2 + y2 – 8x + 2y – 1 = 0 không phải phương trình đường tròn vì hệ số của x2 khác hệ số của y2.
+ Phương trình x2 + y2 + 2x – 4y – 4 = 0 có :
a = –1; b = 2; c = –4 ⇒ a2 + b2 – c = 9 > 0
⇒ phương trình trên là phương trình đường tròn.
+ Phương trình x2 + y2 – 2x – 6y + 20 = 0 có :
a = 1; b = 3; c = 20 ⇒ a2 + b2 – c = –10 < 0
⇒ phương trình trên không là phương trình đường tròn.
+ Phương trình x2 + y2 + 6x + 2y + 10 = 0 có :
a = –3; b = –1; c = 10 ⇒ a2 + b2 – c = 0 = 0
⇒ phương trình trên không là phương trình đường tròn.
a) Đây không phải là phương trình đường tròn do có \(xy\).
b) Vì \({a^2} + {b^2} - c = {1^2} + {2^2} - 5 = 0\)nên phương trình đã cho không là phương trình tròn.
c) Vì \({a^2} + {b^2} - c = {\left( { - 3} \right)^2} + {4^2} - 1 = 24 > 0\)nên phương trình đã cho là phương trình tròn có tâm \(I\left( { - 3;4} \right)\) và bán kính \(R = \sqrt {{a^2} + {b^2} - c} = 2\sqrt 6 \).
Lời giải:
$3^x.x^2=4y(y+1)$ nên $x$ chẵn. Đặt $x=2a$ ta có:
$3^{2a}.a^2=y(y+1)\Leftrightarrow (3^a.a)^2=y(y+1)$
Dễ thấy $(y,y+1)=1$ nên để tích của chúng là scp thì $y,y+1$ là scp.
Đặt $y=m^2; y+1=n^2$ với $m,n$ tự nhiên.
$\Rightarrow 1=(n-m)(n+m)$
$\Rightarrow n=1; m=0\Rightarrow y=0\Rightarrow x=0$
\(pt\Leftrightarrow20x+20y+50=25xy\)
\(\Leftrightarrow5y\left(5x-4\right)-4\left(5x-4\right)=66\)
\(\Leftrightarrow\left(5x-4\right)\left(5y-4\right)=66\)
đến đây thì dễ rồi
a: Khi m=1 thì phương trình sẽ là:
\(x^2-2x+1-1=0\)
=>x^2-2x=0
=>x(x-2)=0
=>x=0 hoặc x=2
b: \(\text{Δ}=\left(-2\right)^2-4\left(m-1\right)=4-4m+4=-4m+8\)
Để phương trình có 2 nghiệm thì -4m+8>=0
=>-4m>=-8
=>m<=2
\(x_1^3+x_2^3< =15\)
=>\(\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)< =15\)
=>\(2^3-3\cdot2\cdot\left(m-1\right)< =15\)
=>\(8-6m+6< =15\)
=>-6m+14<=15
=>-6m<=1
=>\(m>=-\dfrac{1}{6}\)
=>\(-\dfrac{1}{6}< =m< =2\)
\(x^2+2x+1-\left(y^2+4y+4\right)=7\)
\(\Leftrightarrow\left(x+1\right)^2-\left(y+2\right)^2=7\)
\(\Leftrightarrow\left(x+y+3\right)\left(x-y-1\right)=7\)
Do x, y nguyên dương \(\Rightarrow x+y+3>3\)
\(\Rightarrow\left\{{}\begin{matrix}x+y+3=7\\x-y-1=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)
Vậy pt có cặp nghiệm nguyên dương duy nhất \(\left(x;y\right)=\left(3;1\right)\)