A, -x2+4x-9<-5 với mọi x
B, x2-2x+9>8 với mọi số thực
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(-x^2+4x-5\)
\(=-\left(x^2-4x+5\right)\)
\(=-\left(x^2-4x+4+1\right)\)
\(=-\left(x-2\right)^2-1< 0\forall x\)
b: Ta có: \(x^4\ge0\forall x\)
\(3x^2\ge0\forall x\)
Do đó: \(x^4+3x^2\ge0\forall x\)
\(\Leftrightarrow x^4+3x^2+3>0\forall x\)
c: Ta có: \(\left(x^2+2x+3\right)=\left(x+1\right)^2+2>0\forall x\)
\(x^2+2x+4=\left(x+1\right)^2+3>0\forall x\)
Do đó: \(\left(x^2+2x+3\right)\left(x^2+2x+4\right)>0\forall x\)
\(\Leftrightarrow\left(x^2+2x+3\right)\left(x^2+2x+4\right)+3>0\forall x\)
a.
-x2 + 4x - 9 <= -5
<=> -x2 + 4x - 4 <= 0
<=> -(x2 - 4x + 4) <= 0
<=> -(x - 2)2 <= 0. Luôn đúng với mọi x
b.
x2 - 2x + 9 >= 8
<=> x2 - 2x + 1 >= 0
<=> (x - 1)2 >= 0. Luôn đúng với mọi x
a) \(x^2-6x+10=\left(x^2-6x+9\right)+1=\left(x-3\right)^2+1\ge1>0\forall x\)
b) \(4x-x^2-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1\le-1< 0\forall x\)
1, 2x2-6x+1=0
\(\Leftrightarrow\) 2(x2-3x+\(\dfrac{1}{2}\))=0
\(\Leftrightarrow\)x2-3x+\(\dfrac{1}{2}\)=0(vì 2 \(\ne\) 0)
\(\Leftrightarrow\)x2-2.\(\dfrac{3}{2}.x+\dfrac{9}{4}+\dfrac{1}{2}-\dfrac{9}{4}\)=0
\(\Leftrightarrow\)(x-\(\dfrac{3}{2}\))2-\(\dfrac{7}{4}\)=0
\(\Leftrightarrow\)(x-\(\dfrac{3+\sqrt{7}}{2}\))(x-\(\dfrac{3-\sqrt{7}}{2}\))=0
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=\dfrac{3+\sqrt{7}}{2}\\x=\dfrac{3-\sqrt{7}}{2}\end{matrix}\right.\)
Vậy tập nghiệm bạn tự giải nhé
2a, -x2+4x-9\(\le\)5
\(\Leftrightarrow\)-x2+4x-4\(\le\)0
\(\Leftrightarrow\)-(x-2)2\(\le\)0
\(\Leftrightarrow\)(x-2)2\(\ge\)0 đúng \(\forall\) x
Vậy dfcm
Chứng minh rằng:
a, x^2-4x>-5 với mọi số thực x
b, Chứng minh 2x^2+4y^2-4x-4xy+5>0 với mọi số thực x;y
a) Xét \(x^2-4x+4=\left(x-2\right)^2\ge0\)
<=> \(x^2-4x\ge-4>-5\)
b) \(2x^2+4y^2-4x-4xy+5\)
= \(\left(x^2-4x+4\right)+\left(x^2-4xy+4y^2\right)+1\)
= \(\left(x-2\right)^2+\left(x-2y\right)^2+1\ge1>0\)
Bài 1:
Ta có:
\(x^2+x+1=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)
Ta có:
\(-\left(4x-x^2-5\right)=-4x+x^2+5=x^2-4x+5=x^2-4x+4+1=\left(x-2\right)^2+1\ge1>0\)
\(\Rightarrow4x-x^2-5< 0\)
Ta có :
\(x^2-4x+5=\left(x^2-2.2x+2^2\right)+1=\left(x-2\right)^2+1\ge1>0\)
Vậy đa thức \(x^2-4x+5\) vô nghiệm với mọi giá trị của x
Chúc bạn học tốt ~