3/x =-9/y
và 2x + 5y = -234
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{3}{x}=-\dfrac{9}{y}\Rightarrow\dfrac{x}{3}=\dfrac{-y}{9}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{3}=-\dfrac{y}{9}=\dfrac{-5x}{-15}=-\dfrac{3y}{27}==\dfrac{-5x-3y}{-15+27}=\dfrac{-60}{12}=-5\)
\(\Rightarrow\left\{{}\begin{matrix}x=\left(-5\right).3=-15\\y=\left(-5\right).\left(-9\right)=45\end{matrix}\right.\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{3}=\dfrac{y}{-9}=\dfrac{5x+3y}{5\cdot3+3\cdot\left(-9\right)}=\dfrac{-60}{-12}=5\)
Do đó: x=15; y=-45
a: \(\left\{{}\begin{matrix}x+2y=3\\4x+5y=6\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}4x+8y=12\\4x+5y=6\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3y=6\\x+2y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=3-2y=3-2\cdot2=-1\end{matrix}\right.\)
b: \(\left\{{}\begin{matrix}x+y=5\\2x-y=4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x+y+2x-y=5+4\\x+y=5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3x=9\\x+y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=5-3=2\end{matrix}\right.\)
c: \(\left\{{}\begin{matrix}x+2y=5\\x-5y=-9\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x+2y-x+5y=5+9=14\\x+2y=5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}7y=14\\x+2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=5-2y=1\end{matrix}\right.\)
điều kiện <=>\(\begin{cases}\frac{2x+7}{4}=\frac{2x-5y}{9}\\\frac{2x+7}{4}=\frac{3-5y}{7}\end{cases}\)
<=>\(\begin{cases}14x+49=12-20y\\18x+63=8x-20y\end{cases}\) <=>\(\begin{cases}14x+20y=-37\\14x+20y=-63\end{cases}\) hệ phương trình vô nghiệm=> không có giá trị x,y thỏa mãn
\(A=4x^2+12xy+9y^2\)
\(B=25x^2-10xy+y^2\)
\(C=8x^3+12x^2y^2+6xy^4+y^6\)
\(D=\left(x^2\right)^2-\left(\dfrac{2}{5}y\right)^2=x^4-\dfrac{4y^2}{25}\)
\(E=x^3-27y^3\)
\(F=x^6-27\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{3}=\dfrac{y}{-9}=\dfrac{2x+5y}{2\cdot3+5\cdot\left(-9\right)}=\dfrac{-234}{-39}=6\)
Do đó: x=18; y=-54