Chứng minh rằng (n-2):(n-1)
Mình cảm ơn nha!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\dfrac{2n^2+n+1}{n}\) ( n #0)
Gọi ước chung của ớn nhất của 2n2 + n + 1 và n là d
Ta có: \(\left\{{}\begin{matrix}2n^2+n+1⋮d\\n⋮d\end{matrix}\right.\) ⇒ 1 ⋮ d ⇒ d = 1
Vậy ước chung lớn nhất của 2n2 + n + 1 và n là 1
hay phân số \(\dfrac{2n^2+n+1}{n}\) là phân số tối giản ( đpcm)
......................?
mik ko biết
mong bn thông cảm
nha ................
Lời giải:
Đặt $n+1=a^2$ và $2n+1=b^2$ với $a,b$ là số tự nhiên.
Vì $2n+1$ lẻ nên $b^2$ lẻ. SCP lẻ chia $4$ dư $1$ nên $2n+1$ chia $4$ dư $1$
$\Rightarrow 2n\vdots 4$
$\Rightarrow n\vdots 2$
$\Rightarrow n+1=a^2$ lẻ. Ta biết SCP lẻ chia $8$ dư $1$ nên $n+1=a^2$ chia $8$ dư $1$
$\Rightarrow n\vdots 8(1)$
Mặt khác:
Nếu $n$ chia 3 dư $1$ thì $n+1$ chia $3$ dư $2$ (vô lý vì 1 SCP chia 3 dư 0 hoặc 1)
Nếu $n$ chia $3$ dư $2$ thì $2n+1$ chia $3$ dư $2$ (cũng vô lý)
Do đó $n$ chia hết cho $3(2)$
Từ $(1);(2)$ mà $(3,8)=1$ nên $n\vdots 24$ (đpcm)
( n - 2 ) : ( n - 1) rồi sao
chứng minh gì cơ
thiếu đề à