K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2019

a A 3 2 4 1 c b B 3 2 4 1

a, \(\widehat{B}_1=\widehat{B_3}\) đối đỉnh

\(\widehat{A}_1=\widehat{B}_1\) theo bài đầu 

Do đó \(\widehat{A_1}=\widehat{B_3}\)

Mặt khác,ta có \(\widehat{A_1}+\widehat{A_4}=180^0\) hai góc kề bù

=> \(\widehat{A_4}=180^0-\widehat{A_1}\)                                  \((1)\)

Và \(\widehat{B_2}+\widehat{B_3}=180^0\) hai góc kề bù

=> \(\widehat{B_2}=180^0-\widehat{B_3}\)                                 \((2)\)

\(\widehat{A_1}=\widehat{B_3}\)                                                      \((3)\)

Từ 1,2,3 ta có : \(\widehat{A_4}=\widehat{B_2}\)

b, \(\widehat{A_2}=\widehat{A_4}\) đối đỉnh

\(\widehat{A_4}=\widehat{B_2}\) theo câu a

Do đó : \(\widehat{A_2}=\widehat{B_2};\widehat{A_1}=\widehat{A_3}\) đối đỉnh

\(\widehat{A_1}=\widehat{B_3}\) câu a

Do đó \(\widehat{A_3}=\widehat{B_3}\). Mặt khác \(\widehat{B_2}=\widehat{B_4}\) hai góc đối đỉnh

\(\widehat{A_4}=\widehat{B_2}\) câu a . Do đó \(\widehat{A_4}=\widehat{B_4}\)

c, \(\widehat{B_1}+\widehat{B_2}=180^0\) hai góc kề bù

\(\widehat{A_1}=\widehat{B_1}\) theo đầu bài

Do đó \(\widehat{A_1}+\widehat{B_2}=180^0\)

Mặt khác \(\widehat{B_2}+\widehat{B_3}=180^0\) kề bù

\(\widehat{A_4}=\widehat{B_2}\) theo câu a . Do đó \(\widehat{A_4}+\widehat{B_3}=180^0\)

26 tháng 8 2019

mik chịu thui xin lỗi bạn

AH
Akai Haruma
Giáo viên
31 tháng 8 2023

Lời giải:

Sử dụng bổ đề: Một số chính phương $x^2$ khi chia 3 dư 0 hoặc 1.

Chứng minh:

Nêú $x$ chia hết cho $3$ thì $x^2\vdots 3$ (dư $0$)

Nếu $x$ không chia hết cho $3$. Khi đó $x=3k\pm 1$ 

$\Rightarrow x^2=(3k\pm 1)^2=9k^2\pm 6k+1$ chia $3$ dư $1$

Vậy ta có đpcm

-----------------------------

Áp dụng vào bài:

TH1: Nếu $a,b$ chia hết cho $3$ thì hiển nhiên $ab(a^2+2)(b^2+2)\vdots 9$

TH1: Nếu $a\vdots 3, b\not\vdots 3$

$\Rightarrow b^2$ chia $3$ dư $1$

$\Rightarrow b^2+3\vdots 3$

$\Rightarrow a(b^2+3)\vdots 9$

$\Rightarrow ab(a^2+3)(b^2+3)\vdots 9$

TH3: Nếu $a\not\vdots 3; b\vdots 3$

$\Rightarrow a^2$ chia $3$ dư $1$

$\Rightarrow a^2+2\vdots 3$

$\Rightarrow b(a^2+2)\vdots 9$

$\Rightarrow ab(a^2+2)(b^2+2)\vdots 9$

TH4: Nếu $a\not\vdots 3; b\not\vdots 3$

$\Rightarrow a^2, b^2$ chia $3$ dư $1$

$\Rightarrow a^2+2\vdots 3; b^2+2\vdots 3$

$\Rightarrow ab(a^2+2)(b^2+2)\vdots 9$

Từ các TH trên ta có đpcm.

 

20 tháng 4 2016

khá là khó

16 tháng 6 2017

Bài này lớp 6 mà bạn

Đặt c1=a1-b1, ... , c5=a5-b5.

Có c1+ c+ ...+ c5

= (a1-b1)+(a2-b2)+...+(a5-b5)

= (a1+a2+...+a5)-(b1+b2+...+b5)

=0 (vì b1, b2, b3, b4, b5 là hoán vị của a1, a2, a3, a4, a5)

=> Trong 5 số c1,...,ccó một số chẵn vì từ c1 đến c5 có 5 số

=> Trong các số a1-b1,...,a2-bcó một số chẵn

Vậy ... (đpcm)

Ta có: `a, b, c` là các cạnh của tam giác

`-` Theo bất đẳng thức tam giác ta có: `A+B>C -> AB+AC>A^2`

Tương tự vế trên 

`-> CA+CB>C^2 ; AB+BC>B^2`

Cộng tổng tất cả các vế trên: `AC+BC+AB+AC+AB+BC > A^2+B^2+C^2`

`-> 2 (AB+AC+BC) > A^2+B^2+C^2 (đpcm)`