K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2019

1a///////////2b

Câu 1:(2 điểm):a) Cho a,b,c là các số thực thỏa mãn a+b+c= 2018 và 1/a +1/b +1/c = 1/2018. Tính giá trị của biểu thức A=1/a^2017 + 1/b^2017 + 1/c^2017b) Rút gọn biểu thức [ (căn(căn(5)+2)+căn(căn(5)-2))/căn(căn(5)+1) ] - căn(3-2.căn(2))Câu 2:(1.5 điểm):Giải phương trình (x^2)+(4x^2)/(x^2-4x+4) = 5Câu 3:(1.5 điểm):Tìm số tự nhiên y để (y^2+1)x^3 + (y^3-1)x chia hết cho 6, biết x thuộc N*Câu 4:(2,5 điểm):Cho ABC nhọn, ba...
Đọc tiếp

Câu 1:(2 điểm):
a) Cho a,b,c là các số thực thỏa mãn a+b+c= 2018 và 1/a +1/b +1/c = 1/2018. Tính giá trị của biểu thức A=1/a^2017 + 1/b^2017 + 1/c^2017
b) Rút gọn biểu thức [ (căn(căn(5)+2)+căn(căn(5)-2))/căn(căn(5)+1) ] - căn(3-2.căn(2))
Câu 2:(1.5 điểm):
Giải phương trình (x^2)+(4x^2)/(x^2-4x+4) = 5
Câu 3:(1.5 điểm):
Tìm số tự nhiên y để (y^2+1)x^3 + (y^3-1)x chia hết cho 6, biết x thuộc N*
Câu 4:(2,5 điểm):
Cho ABC nhọn, ba đường cao AD, BF, CE cắt nhau tại H.
a) Giả sử HB = 6cm; HF = 3cm; CE = 11cm và CH>HE. Tính độ dài CH;EH.
b)Gọi I là giao điểm EF và AH. Cmr IH/AI=HD/AD
c) Gọi K là điểm nằm giữa C và D. Kẻ AS vuông góc HK tại S. Cm SK là phân giác của góc DSI
Câu 5:(1,5 điểm):
Cho tam giác ABC, I là điểm nằm trong tam giác. Các tia AI, BI, CI cắt các cạnh BC, AC, AB lần lượt tại các điểm D, E, F. Cmr AI/ID+BI/IE+CI/IF>=6
Câu 6:(1.5 điểm):
Cho x, y, z > 0. Cmr (x^2-z^2)/(y+z) + (z^2-y^2)/(x+y) + (y^2-x^2)/(x+z) >=0
CÁC AE GIÚP EM VỚI (ĐANG GẤP).

2
23 tháng 9 2017

cho hình vẽ đi

không có hình vẽ

=> Ta không trả lời được

23 tháng 9 2017

Bạn ko cần thiết làm bài hình đâu, bạn chỉ cần làm 1 trong 6 bài là đc !

8 tháng 6 2016

A B C D E F I

a, 

ta có 

A + B+ C = \(180^0\)

B + C  = \(180^0\)-  A

mà BI là phân giác góc B

IBC = \(\frac{1}{2}\)B

CI là phân giác góc C 

ICB = \(\frac{1}{2}\)C

suy ra 

IBC + ICB = \(\frac{1}{2}\)B + \(\frac{1}{2}\)C = \(\frac{1}{2}\)( B + C ) = \(\frac{1}{2}\)\(180^0\)- A ) = \(\frac{1}{2}\) \(\left(180^0-60^0\right)\)\(60^0\)

mà IBC + ICB + BIC = \(180^0\)

suy ra BIC = \(180^0\)- ( IBC + ICB )

          BIC = \(180^0\)\(60^0\) 

          BIC = \(120^0\)

b,

ta có vì I là giao điểm của phân giác góc B và C 

suy ra phân giác góc A đi qua I suy ra tia AI trùng tia IF suy ra AF là phần giác góc A mà I cách đều AB ; AC ; BC 

nên IE = ID = IF

c,

ta có EIB + BIC =\(180^0\) 

       EIB = \(180^0-120^0\)

     EIB = \(60^0\)

    Mà EIB đối đỉnh góc DIC 

suy ra DIC = EIB =  \(60^0\)

vì IF là tia phân giác góc BIC 

nên BIF = CIF = \(\frac{1}{2}\)\(120^0\)\(60^0\)

EIF = BIE + BIF = \(60^0+60^0=120^0\)

DIF = DIC + CIF =  \(60^0+60^0=120^0\)

xét tam giác EIF và DIF có 

EIF = DIF = \(120^0\)

IF là cạnh chung 

IE = ID 

suy ra tam giác EIF = tam giác DIF ( c-g-c )

suy ra EF = DF 

ta có góc BIC đối đỉnh góc EID 

nên BIC = EID = \(120^0\)

xét tam giác EIF và EID có 

EID = EIF =\(120^0\)

ID = IF 

IE cạnh chung 

suy ra tam giác DIE = tam giác FIE ( c-g-c )

suy ra ED = EF 

mà EF = DF 

suy ra ED = EF = DF

suy ra tam giác EDF là tam giác đều 

d,

ta có IE = IF = ID 

nên I cách đều 3 đỉnh tam giác DFE nên I là giao điểm của 3 đường trung trực tam giác DEF 

mà trong tam giác đều 3 đường trung trực đồng thời là 3 đường phân giác của tam giác đó 

suy ra I là giao điểm của hai đường phân giác trong tam giác ABC vá DEF

Bài 1: (4,0 điểm). Cho biểu thức a) Rút gọn biểu thức P.b) Tìm x để .c) Tìm giá trị nguyên của x để P nhận giá trị là số nguyên.Bài 2: (4,5 điểm). a) Giải phương trình : .b) Phân tích đa thức sau thành nhân tử: (x + 2)(2x2 – 5x) - x3 - 8c) Cho x, y, z là các số khác 0 và đôi một khác nhau thỏa mãn: . Tính giá trị của biểu thức: .Bài 3: (4,0 điểm). a) Tìm tất cả các cặp số nguyên (x; y) thỏa...
Đọc tiếp

Bài 1: (4,0 điểm). Cho biểu thức 
a) Rút gọn biểu thức P.
b) Tìm x để .
c) Tìm giá trị nguyên của x để P nhận giá trị là số nguyên.
Bài 2: (4,5 điểm). 
a) Giải phương trình : .
b) Phân tích đa thức sau thành nhân tử: (x + 2)(2x2 – 5x) - x3 - 8
c) Cho x, y, z là các số khác 0 và đôi một khác nhau thỏa mãn: . Tính giá trị của biểu thức: .
Bài 3: (4,0 điểm). 
a) Tìm tất cả các cặp số nguyên (x; y) thỏa mãn: y(x – 1) = x2 + 2
b) Chứng minh rằng nếu các số nguyên a, b, c thỏa mãn b2 – 4ac và b2 + 4ac đồng thời là các số chính phương thì abc  30. 
Bài 4: (6,0 điểm). 
1) Cho tam giác ABC vuông tại A. Lấy một điểm M bất kỳ trên cạnh AC. Từ C vẽ một đường thẳng vuông góc với tia BM, đường thẳng này cắt tia BM tại D, cắt tia BA tại E, EM cắt BC tại I.
a) Chứng minh EA.EB = ED.EC.
b) Chứng minh .
c) Chứng minh BM.BD + CM.CA = BC2.
d) Vẽ đường thẳng vuông góc với AB tại B, đường thẳng vuông góc với CD tại C, chúng cắt nhau tại K. Chứng minh MK luôn đi qua một điểm cố định khi M thay đổi.
e) Đặt BC = a; EC = b; BE = c; AD = a’; AI = b’; DI = c’.
Chứng minh .
2) Cho điểm D thay đổi trên cạnh BC của tam giác nhọn ABC (D khác B và C). Từ D kẻ đường thẳng song song với AB cắt cạnh AC tại điểm N. Cũng từ D kẻ đường thẳng song song với AC cắt cạnh AB tại điểm M. Tìm vị trí của D để đoạn thẳng MN có độ dài nhỏ nhất 
Bài 5: (1,5 điểm). Cho a, b, c > 0 thỏa mãn: a2 + b2 + c2 = 1. Chứng minh rằng 

(1)/(1-ab)+(1)/(1-bc)+(1)/(1-ca)<=9/2

 

2
8 tháng 4 2016

Bạn tự giải luôn đi!

8 tháng 4 2016

dài quá, ko muốn giải