Bài 1: Thực hiện phép tính:a, \(3\frac{1}{2}-\frac{1}{2}.\left(-4,25-\frac{3}{4}\right)^2:\frac{5}{4}\)b, \(\frac{3}{7}.1\frac{1}{2}+\frac{3}{7}.0,5-\frac{3}{7}.9\)c, \(\frac{125^{2016}.8^{2017}}{50^{2017}.20^{2018}}\)d, \(\frac{4^{2002}.9^{1001}}{16^{1001}.3^{2003}}\)e, \(\sqrt{25-16}-\left|-3,7+0,7\right|\)Bài 2: Tìm xa, \(\frac{1}{3}x+\frac{4}{5}=3\frac{4}{5}\)b, \(\left|x+\frac{3}{4}\right|-2,25=1\frac{3}{4}\)c, \(\left(-x+\frac{2}{5}\right)^4=\frac{1}{16}\)d,...
Đọc tiếp
Bài 1: Thực hiện phép tính:
a, \(3\frac{1}{2}-\frac{1}{2}.\left(-4,25-\frac{3}{4}\right)^2:\frac{5}{4}\)
b, \(\frac{3}{7}.1\frac{1}{2}+\frac{3}{7}.0,5-\frac{3}{7}.9\)
c, \(\frac{125^{2016}.8^{2017}}{50^{2017}.20^{2018}}\)
d, \(\frac{4^{2002}.9^{1001}}{16^{1001}.3^{2003}}\)
e, \(\sqrt{25-16}-\left|-3,7+0,7\right|\)
Bài 2: Tìm x
a, \(\frac{1}{3}x+\frac{4}{5}=3\frac{4}{5}\)
b, \(\left|x+\frac{3}{4}\right|-2,25=1\frac{3}{4}\)
c, \(\left(-x+\frac{2}{5}\right)^4=\frac{1}{16}\)
d, \(\left(\frac{2}{5}\right)^{3x}:\left(\frac{4}{3}\right)^{21}=\left(\frac{6}{20}\right)^{21}\)
e, \(\frac{-x}{\frac{3}{5}}=\frac{\frac{27}{5}}{-x}\)
g, \(x:1\frac{1}{2}=-2,5:2\frac{1}{5}\)
a) \(\frac{1}{4}+\frac{3}{4}:x=\frac{5}{8}\)
\(\frac{3}{4}:x=\frac{3}{8}\)
\(x=2\)
vậy x=2
b) \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x.\left(x+1\right)}=\frac{2000}{2002}\)
\(\frac{2}{6}+\frac{2}{12}+...+\frac{2}{x.\left(x+1\right)}=\frac{2000}{2002}\)
\(2.\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x.\left(x+1\right)}\right)=\frac{2000}{2002}\)
\(2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2000}{2002}\)
\(2.\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2000}{2002}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{1000}{2002}\)
\(\frac{1}{x+1}=\frac{1}{2002}\)
\(x+1=2002\)
\(x=2001\)
vậy x=2001
\(\frac{1}{4}+\frac{3}{4}:x=\frac{5}{8}\)
\(\frac{3}{4}:x=\frac{5}{8}-\frac{1}{4}\)
\(\frac{3}{4}:x=\frac{5}{8}-\frac{2}{8}\)
\(\frac{3}{4}:x=\frac{3}{8}\)
\(x=\frac{3}{4}:\frac{3}{8}\)
\(x=\frac{3}{4}.\frac{8}{3}\)
\(x=\frac{8}{4}\)
\(x=\frac{1}{2}=2\)