Cho tam giác nhọn ABC thỏa mãn 2b.sinA=a√3 trong đó AC=b,BC=a.tính số đo góc B
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(AH^2=BH.CH\)=> \(AH=\sqrt{BH.CH}=\sqrt{2,25.4}=3\)
\(BC=6.25\)
\(AB^2=BH.BC\)=> \(AB=\sqrt{BH.BC}=\sqrt{2,25.6,25}=3.75\)
\(AC^2=CH.BC\)=> \(AC=\sqrt{CH.BC}=\sqrt{4.6,25}=5\)
b) \(\sin B=\frac{AC}{BC}=\frac{5}{6,25}=0,8\)=> \(\widehat{B}\approx53'8''\)
\(\sin C=\frac{AB}{BC}=\frac{3,75}{6,25}=0,6\)=> \(\widehat{C}\approx36'52''\)
Giả thiết tương đương:
\(a^4+b^4+c^4+2b^2c^2=2a^2\left(b^2+c^2\right)+2b^2c^2\)
\(\Leftrightarrow a^4+\left(b^2+c^2\right)^2=2a^2\left(b^2+c^2\right)+2b^2c^2\)
\(\Leftrightarrow\left(b^2+c^2-a^2\right)^2=2b^2c^2\)
\(\Leftrightarrow b^2+c^2-a^2=\pm\sqrt{2}bc\)
\(cosA=\dfrac{b^2+c^2-a^2}{2bc}=\dfrac{\pm\sqrt{2}bc}{2bc}=\pm\dfrac{\sqrt{2}}{2}\)
\(\Rightarrow\left[{}\begin{matrix}A=45^0\\A=135^0\end{matrix}\right.\)
Xét \(\Delta ABC\) và \(\Delta MNP\) có :
\(AB=MN\left(gt\right)\)
\(BC=NP\left(gt\right)\)
\(AC=NP\left(gt\right)\)
\(\Rightarrow\Delta ABC=\Delta MNP\left(c-c-c\right)\)
\(\Rightarrow\widehat{A}=\widehat{M}=65^o\) và \(\widehat{N}=\widehat{B}=71^o\) ( cặp góc tương ứng)
Từ đó ta suy ra được \(\widehat{C}=\widehat{P}=180^o-65^o-71^o=44^o\)
Xét ΔABC và ΔMNP có
AB=MN
BC=NP
AC=MP
=>ΔABC=ΔMNP
=>góc A=góc M=65 độ; góc B=góc N=71 độ; góc C=góc P=180-65-71=180-136=44 độ
Tam giác ABC và tam giác MNP bằng nhau (có ba cặp cạnh bằng nhau: AB = MN, BC = NP, AC = MP). Nên các cặp góc tương ứng trong hai tam giác này bằng nhau: \(\widehat A = \widehat M,\widehat B = \widehat N,\widehat C = \widehat P\).
Vậy \(\widehat A = \widehat M = 65^\circ \); \(\widehat B = \widehat N = 71^\circ \); \(\widehat C = \widehat P = 180^\circ - 65^\circ - 71^\circ = 44^\circ \)(vì tổng ba góc trong một tam giác bằng 180°).