K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác MAOB có \(\widehat{MAO}+\widehat{MBO}=180^0\)

nên MAOB là tứ giác nội tiếp

b: Xét (O) có

ΔABC nội tiếp

AC là đường kính

Do đó;ΔABC vuông tại B

Xét ΔACD vuông tại C có CB là đường cao

nên \(AB\cdot AD=AC^2=4R^2\)

20 tháng 5 2022

 Giải thích các bước giải:

a.Ta có: MA,MBMA,MB là tiếp tuyến của (O)→MO⊥AB(O)→MO⊥AB

Mà CDCD là tiếp tuyến của (O)→CD⊥AC(O)→CD⊥AC

→ˆOID=ˆOCD=90o→OID^=OCD^=90o

→O,I,D,C∈→O,I,D,C∈ đường tròn đường kính ODOD

b.Ta có: ˆAIO=ˆACD=90oAIO^=ACD^=90o

             ˆOAI=ˆCADOAI^=CAD^

→ΔAIO∼ΔACD(g.g)→ΔAIO∼ΔACD(g.g)

→AIAC=AOAD→AIAC=AOAD

→AI.AD=AO.AC=R⋅2R=2R2=8→AI.AD=AO.AC=R⋅2R=2R2=8

→2AI.AD=16→2AI.AD=16

→AB.AD=16→AB.AD=16

Vì MA,MBMA,MB là tiếp tuyến của (O)→MO⊥AB=I(O)→MO⊥AB=I là trung điểm ABAB

→AB=2AI→AB=2AI

c.Gọi MC∩OD=EMC∩OD=E

Ta có:

ˆCAD=ˆOAI=90o−ˆIAM=ˆAMI=ˆAMOCAD^=OAI^=90o−IAM^=AMI^=AMO^

Vì CDCD là tiếp tuyến của (O)(O)

Mà ˆMAO=ˆDCA=90oMAO^=DCA^=90o

→ΔMAO∼ΔACD(g.g)→ΔMAO∼ΔACD(g.g)

→MAAC=AOCD→MAAC=AOCD

→MAAC=OCCD→MAAC=OCCD

→MACO=ACCD→MACO=ACCD

Mà ˆMAC=ˆOCD=90oMAC^=OCD^=90o

→ΔMAC∼ΔOCD(c.g.c)→ΔMAC∼ΔOCD(c.g.c)

→ˆCOD=ˆCMA→COD^=CMA^

→ˆCOE=ˆCMA→COE^=CMA^

Do ˆOCE=ˆACMOCE^=ACM^

→ΔCEO∼ΔCAM(g.g)→ΔCEO∼ΔCAM(g.g)

→ˆCEO=ˆCAM=90o→CEO^=CAM^=90o

→OD⊥MC

 

 

 

 

NV
11 tháng 1

Em coi lại đề, từ điểm M làm sao vẽ các tiếp tuyến AB, AC được nhỉ? Sau đó lại đường kính AC nữa, nghĩa là AC vừa là tiếp tuyến vừa là đường kính?

 

11 tháng 1

em vừa sửa lại đề rồi ạ

26 tháng 12 2022

Nội tiếp chắn nửa đg tròn hả bạn :^?

 

21 tháng 5 2018

mỗi câu C là khó thoi

a: Xét (O) có

MA là tiếp tuyến

MB là tiếp tuyến

Do đó: MA=MB

hay M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

nên O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra OM là đường trung trực của AB

hay OM⊥AB(3)

Xét (O) có

ΔABC nội tiếp

AC là đường kính

Do đó: ΔABC vuông tại B

=>AB⊥BC(4)

Từ (3) và (4) suy ra MO//BC

b: Xét (O) có

ΔADC nội tiếp

AC là đường kính

Do đó: ΔADC vuông tại D

Xét ΔMAC vuông tại A có AD là đường cao

nên \(MD\cdot MC=MA^2\left(5\right)\)

Xét ΔMAO vuông tại A có AH là đường cao

nên \(MH\cdot MO=MA^2\left(6\right)\)

Từ (5) và (6) suy ra \(MD\cdot MC=MH\cdot MO\)

c: Gọi E là giao điểm của ON và CB

=>ON⊥BC tại E

Xét (O) có

OE là một phần đường kính

BC là dây

OE⊥BC tại E

Do đó: E là trung điểm của BC

Xét ΔNCB có

NE là đường cao

NE là đường trung tuyến

Do đó: ΔNCB cân tại N

Xét ΔOCN và ΔOBN có

OC=OB

NC=NB

ON chung

DO đó: ΔOCN=ΔOBN

Suy ra: \(\widehat{OCN}=\widehat{OBN}=90^0\)

hay NC là tiếp tuyến của (O)

31 tháng 12 2023

a: Xét (O) có

MA,MB là các tiếp tuyến

Do đó; MA=MB

=>M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra OM là đường trung trực của AB

=>MO\(\perp\)AB tại H và H là trung điểm của AB

b: Ta có: ΔONC cân tại O

mà OI là đường trung tuyến

nên OI\(\perp\)NC tại I

Xét ΔOAM vuông tại A có AH là đường cao

nên \(OH\cdot OM=OA^2\)

=>\(OH\cdot OM=R^2\)

Xét ΔOIM vuông tại I và ΔOHK vuông tại H có

\(\widehat{IOM}\) chung

Do đó: ΔOIM đồng dạng với ΔOHK

=>\(\dfrac{OI}{OH}=\dfrac{OM}{OK}\)

=>\(OI\cdot OK=OH\cdot OM=R^2\)

=>\(OI\cdot OK=OC\cdot OC\)

=>\(\dfrac{OI}{OC}=\dfrac{OC}{OK}\)

Xét ΔOIC và ΔOCK có

\(\dfrac{OI}{OC}=\dfrac{OC}{OK}\)

\(\widehat{IOC}\) chung

Do đó: ΔOIC đồng dạng với ΔOCK

=>\(\widehat{OIC}=\widehat{OCK}\)

=>\(\widehat{OCK}=90^0\)

=>KC là tiếp tuyến của (O)

31 tháng 12 2023

thank bro