Từ điểm M ở ngoài đường tròn (O) vẽ các tiếp tuyến MA, MB với (O) . Vẽ đường kính AC tiếp tuyên tại C cửa đường tròn (O) cắt AB ở D . Mo cắt AB ở I CM;
a) Tứ giác OIDC nội tiếp
b) AB.AC không đổi khi M di chuyển
c) OD vuông góc với MC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác MAOB có \(\widehat{MAO}+\widehat{MBO}=180^0\)
nên MAOB là tứ giác nội tiếp
b: Xét (O) có
ΔABC nội tiếp
AC là đường kính
Do đó;ΔABC vuông tại B
Xét ΔACD vuông tại C có CB là đường cao
nên \(AB\cdot AD=AC^2=4R^2\)
Giải thích các bước giải:
a.Ta có: MA,MBMA,MB là tiếp tuyến của (O)→MO⊥AB(O)→MO⊥AB
Mà CDCD là tiếp tuyến của (O)→CD⊥AC(O)→CD⊥AC
→ˆOID=ˆOCD=90o→OID^=OCD^=90o
→O,I,D,C∈→O,I,D,C∈ đường tròn đường kính ODOD
b.Ta có: ˆAIO=ˆACD=90oAIO^=ACD^=90o
ˆOAI=ˆCADOAI^=CAD^
→ΔAIO∼ΔACD(g.g)→ΔAIO∼ΔACD(g.g)
→AIAC=AOAD→AIAC=AOAD
→AI.AD=AO.AC=R⋅2R=2R2=8→AI.AD=AO.AC=R⋅2R=2R2=8
→2AI.AD=16→2AI.AD=16
→AB.AD=16→AB.AD=16
Vì MA,MBMA,MB là tiếp tuyến của (O)→MO⊥AB=I(O)→MO⊥AB=I là trung điểm ABAB
→AB=2AI→AB=2AI
c.Gọi MC∩OD=EMC∩OD=E
Ta có:
ˆCAD=ˆOAI=90o−ˆIAM=ˆAMI=ˆAMOCAD^=OAI^=90o−IAM^=AMI^=AMO^
Vì CDCD là tiếp tuyến của (O)(O)
Mà ˆMAO=ˆDCA=90oMAO^=DCA^=90o
→ΔMAO∼ΔACD(g.g)→ΔMAO∼ΔACD(g.g)
→MAAC=AOCD→MAAC=AOCD
→MAAC=OCCD→MAAC=OCCD
→MACO=ACCD→MACO=ACCD
Mà ˆMAC=ˆOCD=90oMAC^=OCD^=90o
→ΔMAC∼ΔOCD(c.g.c)→ΔMAC∼ΔOCD(c.g.c)
→ˆCOD=ˆCMA→COD^=CMA^
→ˆCOE=ˆCMA→COE^=CMA^
Do ˆOCE=ˆACMOCE^=ACM^
→ΔCEO∼ΔCAM(g.g)→ΔCEO∼ΔCAM(g.g)
→ˆCEO=ˆCAM=90o→CEO^=CAM^=90o
→OD⊥MC
Em coi lại đề, từ điểm M làm sao vẽ các tiếp tuyến AB, AC được nhỉ? Sau đó lại đường kính AC nữa, nghĩa là AC vừa là tiếp tuyến vừa là đường kính?
a: Xét (O) có
MA là tiếp tuyến
MB là tiếp tuyến
Do đó: MA=MB
hay M nằm trên đường trung trực của AB(1)
Ta có: OA=OB
nên O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra OM là đường trung trực của AB
hay OM⊥AB(3)
Xét (O) có
ΔABC nội tiếp
AC là đường kính
Do đó: ΔABC vuông tại B
=>AB⊥BC(4)
Từ (3) và (4) suy ra MO//BC
b: Xét (O) có
ΔADC nội tiếp
AC là đường kính
Do đó: ΔADC vuông tại D
Xét ΔMAC vuông tại A có AD là đường cao
nên \(MD\cdot MC=MA^2\left(5\right)\)
Xét ΔMAO vuông tại A có AH là đường cao
nên \(MH\cdot MO=MA^2\left(6\right)\)
Từ (5) và (6) suy ra \(MD\cdot MC=MH\cdot MO\)
c: Gọi E là giao điểm của ON và CB
=>ON⊥BC tại E
Xét (O) có
OE là một phần đường kính
BC là dây
OE⊥BC tại E
Do đó: E là trung điểm của BC
Xét ΔNCB có
NE là đường cao
NE là đường trung tuyến
Do đó: ΔNCB cân tại N
Xét ΔOCN và ΔOBN có
OC=OB
NC=NB
ON chung
DO đó: ΔOCN=ΔOBN
Suy ra: \(\widehat{OCN}=\widehat{OBN}=90^0\)
hay NC là tiếp tuyến của (O)
a: Xét (O) có
MA,MB là các tiếp tuyến
Do đó; MA=MB
=>M nằm trên đường trung trực của AB(1)
Ta có: OA=OB
=>O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra OM là đường trung trực của AB
=>MO\(\perp\)AB tại H và H là trung điểm của AB
b: Ta có: ΔONC cân tại O
mà OI là đường trung tuyến
nên OI\(\perp\)NC tại I
Xét ΔOAM vuông tại A có AH là đường cao
nên \(OH\cdot OM=OA^2\)
=>\(OH\cdot OM=R^2\)
Xét ΔOIM vuông tại I và ΔOHK vuông tại H có
\(\widehat{IOM}\) chung
Do đó: ΔOIM đồng dạng với ΔOHK
=>\(\dfrac{OI}{OH}=\dfrac{OM}{OK}\)
=>\(OI\cdot OK=OH\cdot OM=R^2\)
=>\(OI\cdot OK=OC\cdot OC\)
=>\(\dfrac{OI}{OC}=\dfrac{OC}{OK}\)
Xét ΔOIC và ΔOCK có
\(\dfrac{OI}{OC}=\dfrac{OC}{OK}\)
\(\widehat{IOC}\) chung
Do đó: ΔOIC đồng dạng với ΔOCK
=>\(\widehat{OIC}=\widehat{OCK}\)
=>\(\widehat{OCK}=90^0\)
=>KC là tiếp tuyến của (O)